View project on GitHub


Because of the broad scope of Trilinos, and a continued project emphasis on developing production quality code, we have defined Products within Trilinos:

Framework - [overview] [webpage]
Data Services - [overview] [webpage]
Linear Solvers - [overview] [webpage]
Nonlinear Solvers - [overview] [webpage]
Discretizations - [overview] [webpage]

A brief summary of each capability area is provided below, as well as a link to the capability area homepage (note that some of the webpages are under construction). Each capability area is assigned to a capability leader. The capability leaders are listed below and on the capability area homepages.


Leader - Jim Willenbring

The Framework and Tools Capability Area provides resources for both users and developers. Like User Experience, this capability area is different from most of the other capability areas in that the resources provided extend beyond packages and focus on tools that aid in building, maintaining and documenting Trilinos.

Data Services

Leader - Karen Devine

Linear Solvers

Leader - Siva Rajamanickam

Trilinos provides a wide-variety of solution methods for linear and eigen systems. The Linear & Eigen Solvers Capability Area provides iterative and direct solvers, preconditioners, high-level interfaces, and eigen-solvers. Wide-variety of preconditioners such as incomplete factorizations, domain decomposition preconditioners, and multigrid methods are supported.

Nonlinear Solvers

Leader - Roger Pawlowski

The Trilinos Embedded Nonlinear Analysis Tools Capability Area collects the top level algorithms (outermost loops) in a computational simulation or design study. These include: the solution of nonlinear equations, time integration, bifurcation tracking, parameter continuation, optimization, and uncertainty quantification. A common theme of our algorithm R&D efforts is the philosophy of Analysis beyond Simulation, which aims to automate many computational tasks that are often performed by application code users by trial-and-error or repeated simulation. The tasks that can be automated include performing parameter studies, sensitivity analysis, calibration, optimization, time step size control, and locating instabilities. Also included in this capability area is the automatic differentiation technology that can be used in an application code to provide the derivatives critical to the analysis algorithms.
The packages represented in this area include Piro, NOX, LOCA, Rythmos, MOOCHO, Aristos, Sacado, Stokhos, and TriKota.


Leader - Mauro Perego

The discretization capability area is new to Trilinos 9.0. The objective is to provide, over time, a collection of libraries and interfaces that enable rapid development of application codes for applications that require numerical solution of Partial Differential Equations (PDE). The tools included in this capability area are designed to work with the rest of Trilinos packages or to be used as interoperable components in existing user environments.
The tools included in discretization capability area can be broadly divided into three related categories that correspond to the key steps in the numerical solution of PDEs by mesh-based methods.