44 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
45 std::vector<double> StepSize;
46 std::vector<double> ErrorNorm;
49 RCP<ParameterList> pList =
50 getParametersFromXmlFile(
"Tempus_BDF2_VanDerPol.xml");
54 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
55 double dt = pl->sublist(
"Demo Integrator")
56 .sublist(
"Time Step Control")
57 .get<
double>(
"Initial Time Step");
60 RCP<ParameterList> vdpm_pl = sublist(pList,
"VanDerPolModel",
true);
61 const int nTimeStepSizes = vdpm_pl->get<
int>(
"Number of Time Step Sizes", 3);
65 for (
int n = 0; n < nTimeStepSizes; n++) {
71 if (n == nTimeStepSizes - 1) dt /= 10.0;
74 pl->sublist(
"Demo Integrator")
75 .sublist(
"Time Step Control")
76 .set(
"Initial Time Step", dt);
77 RCP<Tempus::IntegratorBasic<double>> integrator =
78 Tempus::createIntegratorBasic<double>(pl, model);
79 order = integrator->getStepper()->getOrder();
82 bool integratorStatus = integrator->advanceTime();
83 TEST_ASSERT(integratorStatus)
86 double time = integrator->getTime();
87 double timeFinal = pl->sublist(
"Demo Integrator")
88 .sublist(
"Time Step Control")
89 .get<
double>(
"Final Time");
90 double tol = 100.0 * std::numeric_limits<double>::epsilon();
91 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
94 auto solution = Thyra::createMember(model->get_x_space());
95 Thyra::copy(*(integrator->getX()), solution.ptr());
96 solutions.push_back(solution);
97 StepSize.push_back(dt);
101 if ((n == 0) || (n == nTimeStepSizes - 1)) {
102 std::string fname =
"Tempus_BDF2_VanDerPol-Ref.dat";
103 if (n == 0) fname =
"Tempus_BDF2_VanDerPol.dat";
104 std::ofstream ftmp(fname);
105 RCP<const SolutionHistory<double>> solutionHistory =
106 integrator->getSolutionHistory();
107 int nStates = solutionHistory->getNumStates();
108 for (
int i = 0; i < nStates; i++) {
109 RCP<const SolutionState<double>> solutionState = (*solutionHistory)[i];
110 RCP<const Thyra::VectorBase<double>> x = solutionState->getX();
111 double ttime = solutionState->getTime();
112 ftmp << ttime <<
" " << get_ele(*x, 0) <<
" " << get_ele(*x, 1)
121 auto ref_solution = solutions[solutions.size() - 1];
122 std::vector<double> StepSizeCheck;
123 for (std::size_t i = 0; i < (solutions.size() - 1); ++i) {
124 auto tmp = solutions[i];
125 Thyra::Vp_StV(tmp.ptr(), -1.0, *ref_solution);
126 const double L2norm = Thyra::norm_2(*tmp);
127 StepSizeCheck.push_back(StepSize[i]);
128 ErrorNorm.push_back(L2norm);
131 if (nTimeStepSizes > 2) {
134 computeLinearRegressionLogLog<double>(StepSizeCheck, ErrorNorm);
135 out <<
" Stepper = BDF2" << std::endl;
136 out <<
" =========================" << std::endl;
137 out <<
" Expected order: " << order << std::endl;
138 out <<
" Observed order: " << slope << std::endl;
139 out <<
" =========================" << std::endl;
140 TEST_FLOATING_EQUALITY(slope, order, 0.10);
141 out <<
"\n\n ** Slope on BDF2 Method = " << slope <<
"\n"
147 std::ofstream ftmp(
"Tempus_BDF2_VanDerPol-Error.dat");
148 double error0 = 0.8 * ErrorNorm[0];
149 for (std::size_t n = 0; n < StepSizeCheck.size(); n++) {
150 ftmp << StepSizeCheck[n] <<
" " << ErrorNorm[n] <<
" "
151 << error0 * (pow(StepSize[n] / StepSize[0], order)) << std::endl;
156 Teuchos::TimeMonitor::summarize();
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...