Tempus Version of the Day
Time Integration
Loading...
Searching...
No Matches
Tempus_BackwardEuler_ASA.cpp
Go to the documentation of this file.
1//@HEADER
2// *****************************************************************************
3// Tempus: Time Integration and Sensitivity Analysis Package
4//
5// Copyright 2017 NTESS and the Tempus contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8//@HEADER
9
10#include "Teuchos_UnitTestHarness.hpp"
11#include "Teuchos_XMLParameterListHelpers.hpp"
12#include "Teuchos_TimeMonitor.hpp"
13#include "Teuchos_DefaultComm.hpp"
14
15#include "Tempus_config.hpp"
16#include "Tempus_IntegratorBasic.hpp"
17#include "Tempus_IntegratorAdjointSensitivity.hpp"
18
19#include "Thyra_VectorStdOps.hpp"
20#include "Thyra_MultiVectorStdOps.hpp"
21
22#include "../TestModels/SinCosModel.hpp"
23#include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
24
25#include "Thyra_DefaultMultiVectorProductVector.hpp"
26
27#include <vector>
28#include <fstream>
29#include <sstream>
30#include <limits>
31
32namespace Tempus_Test {
33
34using Teuchos::getParametersFromXmlFile;
35using Teuchos::ParameterList;
36using Teuchos::RCP;
37using Teuchos::sublist;
38
42
43// ************************************************************
44// ************************************************************
45TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
46{
47 std::vector<double> StepSize;
48 std::vector<double> ErrorNorm;
49 const int nTimeStepSizes = 7;
50 double dt = 0.2;
51 double order = 0.0;
52 Teuchos::RCP<const Teuchos::Comm<int> > comm =
53 Teuchos::DefaultComm<int>::getComm();
54 for (int n = 0; n < nTimeStepSizes; n++) {
55 // Read params from .xml file
56 RCP<ParameterList> pList =
57 getParametersFromXmlFile("Tempus_BackwardEuler_SinCos_ASA.xml");
58
59 // Setup the SinCosModel
60 // Here we test using an explicit adjoint model for adjoint sensitivities
61 RCP<ParameterList> scm_pl = sublist(pList, "SinCosModel", true);
62 RCP<SinCosModel<double> > model =
63 Teuchos::rcp(new SinCosModel<double>(scm_pl));
64 RCP<SinCosModelAdjoint<double> > adjoint_model =
65 Teuchos::rcp(new SinCosModelAdjoint<double>(scm_pl));
66
67 dt /= 2;
68
69 // Setup sensitivities
70 RCP<ParameterList> pl = sublist(pList, "Tempus", true);
71 ParameterList& sens_pl = pl->sublist("Sensitivities");
72 sens_pl.set("Mass Matrix Is Identity", false); // Just for testing
73 ParameterList& interp_pl = pl->sublist("Default Integrator")
74 .sublist("Solution History")
75 .sublist("Interpolator");
76 interp_pl.set("Interpolator Type", "Lagrange");
77 interp_pl.set("Order", 0);
78
79 // Set FSAL to false, because it is not currently setup for ASA.
80 pl->sublist("Default Stepper").set("Use FSAL", false);
81
82 // Set IC consistency check to false, because it is not currently
83 // setup for ASA.
84 pl->sublist("Default Stepper")
85 .set("Initial Condition Consistency Check", false);
86
87 // Setup the Integrator and reset initial time step
88 pl->sublist("Default Integrator")
89 .sublist("Time Step Control")
90 .set("Initial Time Step", dt);
91 RCP<Tempus::IntegratorAdjointSensitivity<double> > integrator =
92 Tempus::createIntegratorAdjointSensitivity<double>(pl, model,
93 adjoint_model);
94 order = integrator->getStepper()->getOrder();
95
96 // Initial Conditions
97 double t0 = pl->sublist("Default Integrator")
98 .sublist("Time Step Control")
99 .get<double>("Initial Time");
100 RCP<const Thyra::VectorBase<double> > x0 =
101 model->getExactSolution(t0).get_x();
102 const int num_param = model->get_p_space(0)->dim();
103 RCP<Thyra::MultiVectorBase<double> > DxDp0 =
104 Thyra::createMembers(model->get_x_space(), num_param);
105 for (int i = 0; i < num_param; ++i)
106 Thyra::assign(DxDp0->col(i).ptr(),
107 *(model->getExactSensSolution(i, t0).get_x()));
108 integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
109 DxDp0, Teuchos::null, Teuchos::null);
110
111 // Integrate to timeMax
112 bool integratorStatus = integrator->advanceTime();
113 TEST_ASSERT(integratorStatus)
114
115 // Test if at 'Final Time'
116 double time = integrator->getTime();
117 double timeFinal = pl->sublist("Default Integrator")
118 .sublist("Time Step Control")
119 .get<double>("Final Time");
120 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
121
122 // Time-integrated solution and the exact solution along with
123 // sensitivities (relying on response g(x) = x). Note we must transpose
124 // dg/dp since the integrator returns it in gradient form.
125 RCP<const Thyra::VectorBase<double> > x = integrator->getX();
126 RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
127 RCP<Thyra::MultiVectorBase<double> > DxDp =
128 Thyra::createMembers(model->get_x_space(), num_param);
129 {
130 Thyra::ConstDetachedMultiVectorView<double> dgdp_view(*DgDp);
131 Thyra::DetachedMultiVectorView<double> dxdp_view(*DxDp);
132 const int num_g = DgDp->domain()->dim();
133 for (int i = 0; i < num_g; ++i)
134 for (int j = 0; j < num_param; ++j) dxdp_view(i, j) = dgdp_view(j, i);
135 }
136 RCP<const Thyra::VectorBase<double> > x_exact =
137 model->getExactSolution(time).get_x();
138 RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
139 Thyra::createMembers(model->get_x_space(), num_param);
140 for (int i = 0; i < num_param; ++i)
141 Thyra::assign(DxDp_exact->col(i).ptr(),
142 *(model->getExactSensSolution(i, time).get_x()));
143
144 // Plot sample solution, exact solution, and adjoint solution
145 if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
146 typedef Thyra::DefaultProductVector<double> DPV;
147 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
148
149 std::ofstream ftmp("Tempus_BackwardEuler_SinCos_AdjSens.dat");
150 RCP<const SolutionHistory<double> > solutionHistory =
151 integrator->getSolutionHistory();
152 for (int i = 0; i < solutionHistory->getNumStates(); i++) {
153 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
154 const double time_i = solutionState->getTime();
155 RCP<const DPV> x_prod_plot =
156 Teuchos::rcp_dynamic_cast<const DPV>(solutionState->getX());
157 RCP<const Thyra::VectorBase<double> > x_plot =
158 x_prod_plot->getVectorBlock(0);
159 RCP<const DMVPV> adjoint_prod_plot =
160 Teuchos::rcp_dynamic_cast<const DMVPV>(
161 x_prod_plot->getVectorBlock(1));
162 RCP<const Thyra::MultiVectorBase<double> > adjoint_plot =
163 adjoint_prod_plot->getMultiVector();
164 RCP<const Thyra::VectorBase<double> > x_exact_plot =
165 model->getExactSolution(time_i).get_x();
166 ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
167 << get_ele(*(x_plot), 0) << std::setw(11) << get_ele(*(x_plot), 1)
168 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
169 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
170 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
171 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
172 << std::setw(11) << get_ele(*(x_exact_plot), 0) << std::setw(11)
173 << get_ele(*(x_exact_plot), 1) << std::endl;
174 }
175 ftmp.close();
176 }
177
178 // Calculate the error
179 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
180 RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
181 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
182 Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
183 StepSize.push_back(dt);
184 double L2norm = Thyra::norm_2(*xdiff);
185 L2norm *= L2norm;
186 Teuchos::Array<double> L2norm_DxDp(num_param);
187 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
188 for (int i = 0; i < num_param; ++i)
189 L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
190 L2norm = std::sqrt(L2norm);
191 ErrorNorm.push_back(L2norm);
192
193 // out << " n = " << n << " dt = " << dt << " error = " << L2norm
194 // << std::endl;
195 }
196
197 // Check the order and intercept
198 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
199 out << " Stepper = BackwardEuler" << std::endl;
200 out << " =========================" << std::endl;
201 out << " Expected order: " << order << std::endl;
202 out << " Observed order: " << slope << std::endl;
203 out << " =========================" << std::endl;
204 TEST_FLOATING_EQUALITY(slope, order, 0.015);
205 TEST_FLOATING_EQUALITY(ErrorNorm[0], 0.142525, 1.0e-4);
206
207 if (comm->getRank() == 0) {
208 std::ofstream ftmp("Tempus_BackwardEuler_SinCos_AdjSens-Error.dat");
209 double error0 = 0.8 * ErrorNorm[0];
210 for (int n = 0; n < nTimeStepSizes; n++) {
211 ftmp << StepSize[n] << " " << ErrorNorm[n] << " "
212 << error0 * (StepSize[n] / StepSize[0]) << std::endl;
213 }
214 ftmp.close();
215 }
216}
217
218} // namespace Tempus_Test
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
Solution state for integrators and steppers.
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation.
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)