| 
    Tempus Version of the Day
    
   Time Integration 
   | 
 
van der Pol model problem for nonlinear electrical circuit. More...
#include <VanDerPolModel_decl.hpp>
 Public Member Functions | |
| VanDerPolModel (Teuchos::RCP< Teuchos::ParameterList > pList=Teuchos::null) | |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getExactSolution (double t) const | 
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getExactSensSolution (int j, double t) const | 
Private functions overridden from ModelEvaluatorDefaultBase. | |
| int | dim_ | 
| Number of state unknowns (2)   | |
| int | Np_ | 
| Number of parameter vectors (1)   | |
| int | np_ | 
| Number of parameters in this vector (1)   | |
| int | Ng_ | 
| Number of observation functions (0)   | |
| int | ng_ | 
| Number of elements in this observation function (0)   | |
| bool | haveIC_ | 
| false => no nominal values are provided (default=true)   | |
| bool | acceptModelParams_ | 
| Changes inArgs to require parameters.   | |
| bool | isInitialized_ | 
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | inArgs_ | 
| Thyra::ModelEvaluatorBase::OutArgs< Scalar > | outArgs_ | 
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | nominalValues_ | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | x_space_ | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | f_space_ | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | p_space_ | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | g_space_ | 
| Scalar | epsilon_ | 
| This is a model parameter.   | |
| Scalar | t0_ic_ | 
| initial time   | |
| Scalar | x0_ic_ | 
| initial condition for x0   | |
| Scalar | x1_ic_ | 
| initial condition for x1   | |
| Thyra::ModelEvaluatorBase::OutArgs< Scalar > | createOutArgsImpl () const | 
| void | evalModelImpl (const Thyra::ModelEvaluatorBase::InArgs< Scalar > &inArgs_bar, const Thyra::ModelEvaluatorBase::OutArgs< Scalar > &outArgs_bar) const | 
Public functions overridden from ModelEvaluator. | |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_x_space () const | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_f_space () const | 
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getNominalValues () const | 
| Teuchos::RCP< Thyra::LinearOpWithSolveBase< Scalar > > | create_W () const | 
| Teuchos::RCP< Thyra::LinearOpBase< Scalar > > | create_W_op () const | 
| Teuchos::RCP< const Thyra::LinearOpWithSolveFactoryBase< Scalar > > | get_W_factory () const | 
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | createInArgs () const | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_p_space (int l) const | 
| Teuchos::RCP< const Teuchos::Array< std::string > > | get_p_names (int l) const | 
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_g_space (int j) const | 
Public functions overridden from ParameterListAcceptor. | |
| void | setParameterList (Teuchos::RCP< Teuchos::ParameterList > const ¶mList) | 
| Teuchos::RCP< const Teuchos::ParameterList > | getValidParameters () const | 
| void | setupInOutArgs_ () const | 
van der Pol model problem for nonlinear electrical circuit.
This is a canonical equation of a nonlinear oscillator (Hairer, Norsett, and Wanner, pp. 111-115, and Hairer and Wanner, pp. 4-5) for an electrical circuit. In implicit ODE form, 
![\begin{eqnarray*}
  \mathcal{F}_0 & = & \dot{x}_0(t) - x_1(t) = 0 \\
  \mathcal{F}_1 & = & \dot{x}_1(t) - [(1-x_0^2)x_1-x_0]/\epsilon = 0
\end{eqnarray*}](form_425.png)
where the initial conditions are

and the initial time derivatives are
![\begin{eqnarray*}
  \dot{x}_0(t_0=0) & = & x_1(t_0=0) = 0 \\
  \dot{x}_1(t_0=0) & = & [(1-x_0^2)x_1-x_0]/\epsilon = -2/\epsilon
\end{eqnarray*}](form_402.png)
 Hairer and Wanner suggest the output times of 



 where 
The components of iteration matrix, 
![\[
  W_{ij} \equiv \frac{d\mathcal{F}_i}{dx_j} = \frac{d}{dx_j}
         \mathcal{F}_i (\dot{x}_i, x_0, \ldots, x_k, \ldots, x_K, t)
\]](form_431.png)
(not using Einstein summation). Using the chain rule, we can write
![\[
  \frac{d\mathcal{F}_i}{dx_j} =
   \frac{\partial\dot{x}_i}{\partial x_j}
   \frac{\partial\mathcal{F}_i}{\partial \dot{x}_i}
   + \sum_{k=0}^K \frac{\partial x_k}{\partial x_j}
     \frac{\partial\mathcal{F}_i}{\partial x_k}
   + \frac{\partial t}{\partial x_j}
   \frac{\partial\mathcal{F}_i}{\partial t}
\]](form_432.png)
 but noting that 
![\[
   \frac{\partial x_k}{\partial x_j} = \left\{
     \begin{array}{c}
       1 \mbox{ if } j = k \\
       0 \mbox{ if } j \neq k
     \end{array}
   \right.
\]](form_434.png)
we can write
![\[
  \frac{d\mathcal{F}_i}{dx_j} =
    \alpha \frac{\partial\mathcal{F}_i}{\partial \dot{x}_j}
  + \beta \frac{\partial\mathcal{F}_i}{\partial x_j}
\]](form_435.png)
where
![\[
  \alpha = \left\{
    \begin{array}{cl}
      \frac{\partial\dot{x}_i}{\partial x_j} & \mbox{ if } i = j \\
      0 & \mbox{ if } i \neq j
    \end{array} \right.
  \;\;\;\; \mbox{ and } \;\;\;\;
  \beta = \left\{
  \begin{array}{cl}
    \frac{\partial x_k}{\partial x_j} = 1 & \mbox{ if } j = k \\
    0 & \mbox{ if } j \neq k
  \end{array} \right.
\]](form_436.png)
Thus for the van der Pol problem, we have

Definition at line 112 of file VanDerPolModel_decl.hpp.
| Tempus_Test::VanDerPolModel< Scalar >::VanDerPolModel | ( | Teuchos::RCP< Teuchos::ParameterList > | pList = Teuchos::null | ) | 
Definition at line 28 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getExactSolution | ( | double | t | ) | const | 
Definition at line 56 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getExactSensSolution | ( | int | j, | 
| double | t | ||
| ) | const | 
Definition at line 66 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_x_space | ( | ) | const | 
Definition at line 76 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_f_space | ( | ) | const | 
Definition at line 83 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getNominalValues | ( | ) | const | 
Definition at line 90 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< Thyra::LinearOpWithSolveBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::create_W | ( | ) | const | 
Definition at line 99 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< Thyra::LinearOpBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::create_W_op | ( | ) | const | 
Definition at line 137 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::LinearOpWithSolveFactoryBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_W_factory | ( | ) | const | 
Definition at line 147 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::createInArgs | ( | ) | const | 
Definition at line 155 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_p_space | ( | int | l | ) | const | 
Definition at line 273 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Teuchos::Array< std::string > > Tempus_Test::VanDerPolModel< Scalar >::get_p_names | ( | int | l | ) | const | 
Definition at line 284 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_g_space | ( | int | j | ) | const | 
Definition at line 298 of file VanDerPolModel_impl.hpp.
| void Tempus_Test::VanDerPolModel< Scalar >::setParameterList | ( | Teuchos::RCP< Teuchos::ParameterList > const & | paramList | ) | 
Definition at line 375 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Teuchos::ParameterList > Tempus_Test::VanDerPolModel< Scalar >::getValidParameters | ( | ) | const | 
Definition at line 402 of file VanDerPolModel_impl.hpp.
      
  | 
  private | 
Definition at line 307 of file VanDerPolModel_impl.hpp.
      
  | 
  private | 
Definition at line 166 of file VanDerPolModel_impl.hpp.
      
  | 
  private | 
Definition at line 173 of file VanDerPolModel_impl.hpp.
      
  | 
  private | 
Number of state unknowns (2)
Definition at line 160 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Number of parameter vectors (1)
Definition at line 161 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Number of parameters in this vector (1)
Definition at line 162 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Number of observation functions (0)
Definition at line 163 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Number of elements in this observation function (0)
Definition at line 164 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
false => no nominal values are provided (default=true)
Definition at line 165 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Changes inArgs to require parameters.
Definition at line 166 of file VanDerPolModel_decl.hpp.
      
  | 
  mutableprivate | 
Definition at line 167 of file VanDerPolModel_decl.hpp.
      
  | 
  mutableprivate | 
Definition at line 168 of file VanDerPolModel_decl.hpp.
      
  | 
  mutableprivate | 
Definition at line 169 of file VanDerPolModel_decl.hpp.
      
  | 
  mutableprivate | 
Definition at line 170 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Definition at line 171 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Definition at line 172 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Definition at line 173 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
Definition at line 174 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
This is a model parameter.
Definition at line 177 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
initial time
Definition at line 178 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
initial condition for x0
Definition at line 179 of file VanDerPolModel_decl.hpp.
      
  | 
  private | 
initial condition for x1
Definition at line 180 of file VanDerPolModel_decl.hpp.