|
Tempus Version of the Day
Time Integration
|
van der Pol model problem for nonlinear electrical circuit. More...
#include <VanDerPolModel_decl.hpp>
Public Member Functions | |
| VanDerPolModel (Teuchos::RCP< Teuchos::ParameterList > pList=Teuchos::null) | |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getExactSolution (double t) const |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getExactSensSolution (int j, double t) const |
Private functions overridden from ModelEvaluatorDefaultBase. | |
| int | dim_ |
| Number of state unknowns (2) | |
| int | Np_ |
| Number of parameter vectors (1) | |
| int | np_ |
| Number of parameters in this vector (1) | |
| int | Ng_ |
| Number of observation functions (0) | |
| int | ng_ |
| Number of elements in this observation function (0) | |
| bool | haveIC_ |
| false => no nominal values are provided (default=true) | |
| bool | acceptModelParams_ |
| Changes inArgs to require parameters. | |
| bool | isInitialized_ |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | inArgs_ |
| Thyra::ModelEvaluatorBase::OutArgs< Scalar > | outArgs_ |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | nominalValues_ |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | x_space_ |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | f_space_ |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | p_space_ |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | g_space_ |
| Scalar | epsilon_ |
| This is a model parameter. | |
| Scalar | t0_ic_ |
| initial time | |
| Scalar | x0_ic_ |
| initial condition for x0 | |
| Scalar | x1_ic_ |
| initial condition for x1 | |
| Thyra::ModelEvaluatorBase::OutArgs< Scalar > | createOutArgsImpl () const |
| void | evalModelImpl (const Thyra::ModelEvaluatorBase::InArgs< Scalar > &inArgs_bar, const Thyra::ModelEvaluatorBase::OutArgs< Scalar > &outArgs_bar) const |
Public functions overridden from ModelEvaluator. | |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_x_space () const |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_f_space () const |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | getNominalValues () const |
| Teuchos::RCP< Thyra::LinearOpWithSolveBase< Scalar > > | create_W () const |
| Teuchos::RCP< Thyra::LinearOpBase< Scalar > > | create_W_op () const |
| Teuchos::RCP< const Thyra::LinearOpWithSolveFactoryBase< Scalar > > | get_W_factory () const |
| Thyra::ModelEvaluatorBase::InArgs< Scalar > | createInArgs () const |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_p_space (int l) const |
| Teuchos::RCP< const Teuchos::Array< std::string > > | get_p_names (int l) const |
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > | get_g_space (int j) const |
Public functions overridden from ParameterListAcceptor. | |
| void | setParameterList (Teuchos::RCP< Teuchos::ParameterList > const ¶mList) |
| Teuchos::RCP< const Teuchos::ParameterList > | getValidParameters () const |
| void | setupInOutArgs_ () const |
van der Pol model problem for nonlinear electrical circuit.
This is a canonical equation of a nonlinear oscillator (Hairer, Norsett, and Wanner, pp. 111-115, and Hairer and Wanner, pp. 4-5) for an electrical circuit. In implicit ODE form, 
![\begin{eqnarray*}
\mathcal{F}_0 & = & \dot{x}_0(t) - x_1(t) = 0 \\
\mathcal{F}_1 & = & \dot{x}_1(t) - [(1-x_0^2)x_1-x_0]/\epsilon = 0
\end{eqnarray*}](form_425.png)
where the initial conditions are

and the initial time derivatives are
![\begin{eqnarray*}
\dot{x}_0(t_0=0) & = & x_1(t_0=0) = 0 \\
\dot{x}_1(t_0=0) & = & [(1-x_0^2)x_1-x_0]/\epsilon = -2/\epsilon
\end{eqnarray*}](form_402.png)
Hairer and Wanner suggest the output times of 



where 
The components of iteration matrix, 
![\[
W_{ij} \equiv \frac{d\mathcal{F}_i}{dx_j} = \frac{d}{dx_j}
\mathcal{F}_i (\dot{x}_i, x_0, \ldots, x_k, \ldots, x_K, t)
\]](form_431.png)
(not using Einstein summation). Using the chain rule, we can write
![\[
\frac{d\mathcal{F}_i}{dx_j} =
\frac{\partial\dot{x}_i}{\partial x_j}
\frac{\partial\mathcal{F}_i}{\partial \dot{x}_i}
+ \sum_{k=0}^K \frac{\partial x_k}{\partial x_j}
\frac{\partial\mathcal{F}_i}{\partial x_k}
+ \frac{\partial t}{\partial x_j}
\frac{\partial\mathcal{F}_i}{\partial t}
\]](form_432.png)
but noting that 
![\[
\frac{\partial x_k}{\partial x_j} = \left\{
\begin{array}{c}
1 \mbox{ if } j = k \\
0 \mbox{ if } j \neq k
\end{array}
\right.
\]](form_434.png)
we can write
![\[
\frac{d\mathcal{F}_i}{dx_j} =
\alpha \frac{\partial\mathcal{F}_i}{\partial \dot{x}_j}
+ \beta \frac{\partial\mathcal{F}_i}{\partial x_j}
\]](form_435.png)
where
![\[
\alpha = \left\{
\begin{array}{cl}
\frac{\partial\dot{x}_i}{\partial x_j} & \mbox{ if } i = j \\
0 & \mbox{ if } i \neq j
\end{array} \right.
\;\;\;\; \mbox{ and } \;\;\;\;
\beta = \left\{
\begin{array}{cl}
\frac{\partial x_k}{\partial x_j} = 1 & \mbox{ if } j = k \\
0 & \mbox{ if } j \neq k
\end{array} \right.
\]](form_436.png)
Thus for the van der Pol problem, we have

Definition at line 112 of file VanDerPolModel_decl.hpp.
| Tempus_Test::VanDerPolModel< Scalar >::VanDerPolModel | ( | Teuchos::RCP< Teuchos::ParameterList > | pList = Teuchos::null | ) |
Definition at line 28 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getExactSolution | ( | double | t | ) | const |
Definition at line 56 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getExactSensSolution | ( | int | j, |
| double | t | ||
| ) | const |
Definition at line 66 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_x_space | ( | ) | const |
Definition at line 76 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_f_space | ( | ) | const |
Definition at line 83 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::getNominalValues | ( | ) | const |
Definition at line 90 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< Thyra::LinearOpWithSolveBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::create_W | ( | ) | const |
Definition at line 99 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< Thyra::LinearOpBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::create_W_op | ( | ) | const |
Definition at line 137 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::LinearOpWithSolveFactoryBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_W_factory | ( | ) | const |
Definition at line 147 of file VanDerPolModel_impl.hpp.
| Thyra::ModelEvaluatorBase::InArgs< Scalar > Tempus_Test::VanDerPolModel< Scalar >::createInArgs | ( | ) | const |
Definition at line 155 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_p_space | ( | int | l | ) | const |
Definition at line 273 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Teuchos::Array< std::string > > Tempus_Test::VanDerPolModel< Scalar >::get_p_names | ( | int | l | ) | const |
Definition at line 284 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > Tempus_Test::VanDerPolModel< Scalar >::get_g_space | ( | int | j | ) | const |
Definition at line 298 of file VanDerPolModel_impl.hpp.
| void Tempus_Test::VanDerPolModel< Scalar >::setParameterList | ( | Teuchos::RCP< Teuchos::ParameterList > const & | paramList | ) |
Definition at line 375 of file VanDerPolModel_impl.hpp.
| Teuchos::RCP< const Teuchos::ParameterList > Tempus_Test::VanDerPolModel< Scalar >::getValidParameters | ( | ) | const |
Definition at line 402 of file VanDerPolModel_impl.hpp.
|
private |
Definition at line 307 of file VanDerPolModel_impl.hpp.
|
private |
Definition at line 166 of file VanDerPolModel_impl.hpp.
|
private |
Definition at line 173 of file VanDerPolModel_impl.hpp.
|
private |
Number of state unknowns (2)
Definition at line 160 of file VanDerPolModel_decl.hpp.
|
private |
Number of parameter vectors (1)
Definition at line 161 of file VanDerPolModel_decl.hpp.
|
private |
Number of parameters in this vector (1)
Definition at line 162 of file VanDerPolModel_decl.hpp.
|
private |
Number of observation functions (0)
Definition at line 163 of file VanDerPolModel_decl.hpp.
|
private |
Number of elements in this observation function (0)
Definition at line 164 of file VanDerPolModel_decl.hpp.
|
private |
false => no nominal values are provided (default=true)
Definition at line 165 of file VanDerPolModel_decl.hpp.
|
private |
Changes inArgs to require parameters.
Definition at line 166 of file VanDerPolModel_decl.hpp.
|
mutableprivate |
Definition at line 167 of file VanDerPolModel_decl.hpp.
|
mutableprivate |
Definition at line 168 of file VanDerPolModel_decl.hpp.
|
mutableprivate |
Definition at line 169 of file VanDerPolModel_decl.hpp.
|
mutableprivate |
Definition at line 170 of file VanDerPolModel_decl.hpp.
|
private |
Definition at line 171 of file VanDerPolModel_decl.hpp.
|
private |
Definition at line 172 of file VanDerPolModel_decl.hpp.
|
private |
Definition at line 173 of file VanDerPolModel_decl.hpp.
|
private |
Definition at line 174 of file VanDerPolModel_decl.hpp.
|
private |
This is a model parameter.
Definition at line 177 of file VanDerPolModel_decl.hpp.
|
private |
initial time
Definition at line 178 of file VanDerPolModel_decl.hpp.
|
private |
initial condition for x0
Definition at line 179 of file VanDerPolModel_decl.hpp.
|
private |
initial condition for x1
Definition at line 180 of file VanDerPolModel_decl.hpp.