46 const bool use_dfdp_as_tangent, Teuchos::FancyOStream& out,
49 std::vector<std::string> stepperTypes;
50 stepperTypes.push_back(
"IMEX RK 1st order");
51 stepperTypes.push_back(
"IMEX RK SSP2");
52 stepperTypes.push_back(
"IMEX RK ARS 233");
53 stepperTypes.push_back(
"General IMEX RK");
55 std::vector<double> stepperOrders;
56 std::vector<double> stepperErrors;
57 if (use_combined_method) {
58 stepperOrders.push_back(1.1198);
59 stepperOrders.push_back(1.98931);
60 stepperOrders.push_back(2.60509);
61 stepperOrders.push_back(1.992);
63 stepperErrors.push_back(0.00619674);
64 stepperErrors.push_back(0.294989);
65 stepperErrors.push_back(0.0062125);
66 stepperErrors.push_back(0.142489);
69 stepperOrders.push_back(1.1198);
70 stepperOrders.push_back(2.05232);
71 stepperOrders.push_back(2.43013);
72 stepperOrders.push_back(2.07975);
74 stepperErrors.push_back(0.00619674);
75 stepperErrors.push_back(0.0534172);
76 stepperErrors.push_back(0.00224533);
77 stepperErrors.push_back(0.032632);
79 std::vector<double> stepperInitDt;
80 stepperInitDt.push_back(0.0125);
81 stepperInitDt.push_back(0.05);
82 stepperInitDt.push_back(0.05);
83 stepperInitDt.push_back(0.05);
85 Teuchos::RCP<const Teuchos::Comm<int>> comm =
86 Teuchos::DefaultComm<int>::getComm();
88 std::vector<std::string>::size_type m;
89 for (m = 0; m != stepperTypes.size(); m++) {
90 std::string stepperType = stepperTypes[m];
91 std::string stepperName = stepperTypes[m];
92 std::replace(stepperName.begin(), stepperName.end(),
' ',
'_');
93 std::replace(stepperName.begin(), stepperName.end(),
'/',
'.');
95 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
96 std::vector<RCP<Thyra::VectorBase<double>>> sensitivities;
97 std::vector<double> StepSize;
98 std::vector<double> ErrorNorm;
99 const int nTimeStepSizes = 3;
100 double dt = stepperInitDt[m];
102 for (
int n = 0; n < nTimeStepSizes; n++) {
104 RCP<ParameterList> pList =
105 getParametersFromXmlFile(
"Tempus_IMEX_RK_VanDerPol.xml");
108 RCP<ParameterList> vdpmPL = sublist(pList,
"VanDerPolModel",
true);
109 vdpmPL->set(
"Use DfDp as Tangent", use_dfdp_as_tangent);
110 RCP<VanDerPol_IMEX_ExplicitModel<double>> explicitModel =
114 RCP<VanDerPol_IMEX_ImplicitModel<double>> implicitModel =
118 RCP<Tempus::WrapperModelEvaluatorPairIMEX_Basic<double>> model =
120 explicitModel, implicitModel));
123 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
124 ParameterList& sens_pl = pl->sublist(
"Sensitivities");
125 if (use_combined_method)
126 sens_pl.set(
"Sensitivity Method",
"Combined");
128 sens_pl.set(
"Sensitivity Method",
"Staggered");
129 sens_pl.set(
"Reuse State Linear Solver",
true);
131 sens_pl.set(
"Use DfDp as Tangent", use_dfdp_as_tangent);
132 ParameterList& interp_pl = pl->sublist(
"Default Integrator")
133 .sublist(
"Solution History")
134 .sublist(
"Interpolator");
135 interp_pl.set(
"Interpolator Type",
"Lagrange");
136 interp_pl.set(
"Order", 2);
139 if (stepperType ==
"General IMEX RK") {
141 pl->sublist(
"Default Integrator")
142 .set(
"Stepper Name",
"General IMEX RK");
145 pl->sublist(
"Default Stepper").set(
"Stepper Type", stepperType);
149 if (n == nTimeStepSizes - 1)
155 pl->sublist(
"Default Integrator")
156 .sublist(
"Time Step Control")
157 .set(
"Initial Time Step", dt);
158 pl->sublist(
"Default Integrator")
159 .sublist(
"Time Step Control")
160 .remove(
"Time Step Control Strategy");
161 RCP<Tempus::IntegratorForwardSensitivity<double>> integrator =
162 Tempus::createIntegratorForwardSensitivity<double>(pl, model);
163 order = integrator->getStepper()->getOrder();
166 bool integratorStatus = integrator->advanceTime();
167 TEST_ASSERT(integratorStatus)
170 double time = integrator->getTime();
171 double timeFinal = pl->sublist(
"Default Integrator")
172 .sublist(
"Time Step Control")
173 .get<
double>(
"Final Time");
174 double tol = 100.0 * std::numeric_limits<double>::epsilon();
175 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
178 auto solution = Thyra::createMember(model->get_x_space());
179 auto sensitivity = Thyra::createMember(model->get_x_space());
180 Thyra::copy(*(integrator->getX()), solution.ptr());
181 Thyra::copy(*(integrator->getDxDp()->col(0)), sensitivity.ptr());
182 solutions.push_back(solution);
183 sensitivities.push_back(sensitivity);
184 StepSize.push_back(dt);
187 if (comm->getRank() == 0 && ((n == 0) || (n == nTimeStepSizes - 1))) {
188 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
190 std::string fname =
"Tempus_" + stepperName +
"_VanDerPol_Sens-Ref.dat";
191 if (n == 0) fname =
"Tempus_" + stepperName +
"_VanDerPol_Sens.dat";
192 std::ofstream ftmp(fname);
193 RCP<const SolutionHistory<double>> solutionHistory =
194 integrator->getSolutionHistory();
195 int nStates = solutionHistory->getNumStates();
196 for (
int i = 0; i < nStates; i++) {
197 RCP<const SolutionState<double>> solutionState =
198 (*solutionHistory)[i];
199 RCP<const DMVPV> x_prod =
200 Teuchos::rcp_dynamic_cast<const DMVPV>(solutionState->getX());
201 RCP<const Thyra::VectorBase<double>> x =
202 x_prod->getMultiVector()->col(0);
203 RCP<const Thyra::VectorBase<double>> dxdp =
204 x_prod->getMultiVector()->col(1);
205 double ttime = solutionState->getTime();
206 ftmp << std::fixed << std::setprecision(7) << ttime <<
" "
207 << std::setw(11) << get_ele(*x, 0) <<
" " << std::setw(11)
208 << get_ele(*x, 1) <<
" " << std::setw(11) << get_ele(*dxdp, 0)
209 <<
" " << std::setw(11) << get_ele(*dxdp, 1) << std::endl;
217 auto ref_solution = solutions[solutions.size() - 1];
218 auto ref_sensitivity = sensitivities[solutions.size() - 1];
219 std::vector<double> StepSizeCheck;
220 for (std::size_t i = 0; i < (solutions.size() - 1); ++i) {
221 auto sol = solutions[i];
222 auto sen = sensitivities[i];
223 Thyra::Vp_StV(sol.ptr(), -1.0, *ref_solution);
224 Thyra::Vp_StV(sen.ptr(), -1.0, *ref_sensitivity);
225 const double L2norm_sol = Thyra::norm_2(*sol);
226 const double L2norm_sen = Thyra::norm_2(*sen);
227 const double L2norm =
228 std::sqrt(L2norm_sol * L2norm_sol + L2norm_sen * L2norm_sen);
229 StepSizeCheck.push_back(StepSize[i]);
230 ErrorNorm.push_back(L2norm);
232 out <<
" n = " << i <<
" dt = " << StepSize[i] <<
" error = " << L2norm
238 computeLinearRegressionLogLog<double>(StepSizeCheck, ErrorNorm);
239 out <<
" Stepper = " << stepperType << std::endl;
240 out <<
" =========================" << std::endl;
241 out <<
" Expected order: " << order << std::endl;
242 out <<
" Observed order: " << slope << std::endl;
243 out <<
" =========================" << std::endl;
244 TEST_FLOATING_EQUALITY(slope, stepperOrders[m], 0.02);
245 TEST_FLOATING_EQUALITY(ErrorNorm[0], stepperErrors[m], 1.0e-4);
249 std::ofstream ftmp(
"Tempus_" + stepperName +
"_VanDerPol_Sens-Error.dat");
250 double error0 = 0.8 * ErrorNorm[0];
251 for (std::size_t n = 0; n < StepSizeCheck.size(); n++) {
252 ftmp << StepSizeCheck[n] <<
" " << ErrorNorm[n] <<
" "
253 << error0 * (pow(StepSize[n] / StepSize[0], order)) << std::endl;
258 Teuchos::TimeMonitor::summarize();