|
|
| | BLAS (void) |
| | Default constructor.
|
| |
| | BLAS (const BLAS< OrdinalType, ScalarType > &) |
| | Copy constructor.
|
| |
| virtual | ~BLAS (void) |
| | Destructor.
|
| |
| | DefaultBLASImpl (void) |
| | Default constructor.
|
| |
| | DefaultBLASImpl (const DefaultBLASImpl< OrdinalType, ScalarType > &) |
| | Copy constructor.
|
| |
| virtual | ~DefaultBLASImpl (void) |
| | Destructor.
|
| |
| template<typename alpha_type , typename A_type , typename x_type , typename beta_type > |
| void | GEMV (ETransp trans, const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const A_type *A, const OrdinalType &lda, const x_type *x, const OrdinalType &incx, const beta_type beta, ScalarType *y, const OrdinalType &incy) const |
| | Performs the matrix-vector operation: y <- alpha*A*x+beta*y or y <- alpha*A'*x+beta*y where A is a general m by n matrix.
|
| |
| template<typename A_type > |
| void | TRMV (EUplo uplo, ETransp trans, EDiag diag, const OrdinalType &n, const A_type *A, const OrdinalType &lda, ScalarType *x, const OrdinalType &incx) const |
| | Performs the matrix-vector operation: x <- A*x or x <- A'*x where A is a unit/non-unit n by n upper/lower triangular matrix.
|
| |
| template<typename alpha_type , typename x_type , typename y_type > |
| void | GER (const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const x_type *x, const OrdinalType &incx, const y_type *y, const OrdinalType &incy, ScalarType *A, const OrdinalType &lda) const |
| | Performs the rank 1 operation: A <- alpha*x*y'+A.
|
| |
| template<typename alpha_type , typename A_type , typename B_type , typename beta_type > |
| void | GEMM (ETransp transa, ETransp transb, const OrdinalType &m, const OrdinalType &n, const OrdinalType &k, const alpha_type alpha, const A_type *A, const OrdinalType &lda, const B_type *B, const OrdinalType &ldb, const beta_type beta, ScalarType *C, const OrdinalType &ldc) const |
| | General matrix-matrix multiply.
|
| |
| void | SWAP (const OrdinalType &n, ScalarType *const x, const OrdinalType &incx, ScalarType *const y, const OrdinalType &incy) const |
| | Swap the entries of x and y.
|
| |
| template<typename alpha_type , typename A_type , typename B_type , typename beta_type > |
| void | SYMM (ESide side, EUplo uplo, const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const A_type *A, const OrdinalType &lda, const B_type *B, const OrdinalType &ldb, const beta_type beta, ScalarType *C, const OrdinalType &ldc) const |
| | Performs the matrix-matrix operation: C <- alpha*A*B+beta*C or C <- alpha*B*A+beta*C where A is an m by m or n by n symmetric matrix and B is a general matrix.
|
| |
| template<typename alpha_type , typename A_type , typename beta_type > |
| void | SYRK (EUplo uplo, ETransp trans, const OrdinalType &n, const OrdinalType &k, const alpha_type alpha, const A_type *A, const OrdinalType &lda, const beta_type beta, ScalarType *C, const OrdinalType &ldc) const |
| | Performs the symmetric rank k operation: C <- alpha*A*A'+beta*C or C <- alpha*A'*A+beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case or k by n matrix in the second case.
|
| |
| template<typename alpha_type , typename A_type > |
| void | TRMM (ESide side, EUplo uplo, ETransp transa, EDiag diag, const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const A_type *A, const OrdinalType &lda, ScalarType *B, const OrdinalType &ldb) const |
| | Performs the matrix-matrix operation: B <- alpha*op(A)*B or B <- alpha*B*op(A) where op(A) is an unit/non-unit, upper/lower triangular matrix and B is a general matrix.
|
| |
| template<typename alpha_type , typename A_type > |
| void | TRSM (ESide side, EUplo uplo, ETransp transa, EDiag diag, const OrdinalType &m, const OrdinalType &n, const alpha_type alpha, const A_type *A, const OrdinalType &lda, ScalarType *B, const OrdinalType &ldb) const |
| | Solves the matrix equations: op(A)*X=alpha*B or X*op(A)=alpha*B where X and B are m by n matrices, A is a unit/non-unit, upper/lower triangular matrix and op(A) is A or A'. The matrix X is overwritten on B.
|
| |
| void | ROTG (ScalarType *da, ScalarType *db, rotg_c_type *c, ScalarType *s) const |
| | Computes a Givens plane rotation.
|
| |
| void | ROT (const OrdinalType &n, ScalarType *dx, const OrdinalType &incx, ScalarType *dy, const OrdinalType &incy, MagnitudeType *c, ScalarType *s) const |
| | Applies a Givens plane rotation.
|
| |
| void | SCAL (const OrdinalType &n, const ScalarType &alpha, ScalarType *x, const OrdinalType &incx) const |
| | Scale the vector x by the constant alpha.
|
| |
| void | COPY (const OrdinalType &n, const ScalarType *x, const OrdinalType &incx, ScalarType *y, const OrdinalType &incy) const |
| | Copy the vector x to the vector y.
|
| |
| template<typename alpha_type , typename x_type > |
| void | AXPY (const OrdinalType &n, const alpha_type alpha, const x_type *x, const OrdinalType &incx, ScalarType *y, const OrdinalType &incy) const |
| | Perform the operation: y <- y+alpha*x.
|
| |
| ScalarTraits< ScalarType >::magnitudeType | ASUM (const OrdinalType &n, const ScalarType *x, const OrdinalType &incx) const |
| | Sum the absolute values of the entries of x.
|
| |
| template<typename x_type , typename y_type > |
| ScalarType | DOT (const OrdinalType &n, const x_type *x, const OrdinalType &incx, const y_type *y, const OrdinalType &incy) const |
| | Form the dot product of the vectors x and y.
|
| |
| ScalarTraits< ScalarType >::magnitudeType | NRM2 (const OrdinalType &n, const ScalarType *x, const OrdinalType &incx) const |
| | Compute the 2-norm of the vector x.
|
| |
| OrdinalType | IAMAX (const OrdinalType &n, const ScalarType *x, const OrdinalType &incx) const |
| | Return the index of the element of x with the maximum magnitude.
|
| |
Templated BLAS wrapper.
The Teuchos::BLAS class provides functionality similar to the BLAS (Basic Linear Algebra Subprograms). The BLAS provide portable, high- performance implementations of kernels such as dense vector sums, inner products, and norms (the BLAS 1 routines), dense matrix-vector multiplication and triangular solve (the BLAS 2 routines), and dense matrix-matrix multiplication and triangular solve with multiple right-hand sides (the BLAS 3 routines).
The standard BLAS interface is Fortran-specific. Unfortunately, the interface between C++ and Fortran is not standard across all computer platforms. The Teuchos::BLAS class provides C++ bindings for the BLAS kernels in order to insulate the rest of Petra from the details of C++ to Fortran translation.
In addition to giving access to the standard BLAS functionality, Teuchos::BLAS also provides a generic fall-back implementation for any ScalarType class that defines the +, - * and / operators.
Teuchos::BLAS only operates within a single shared-memory space, just like the BLAS. It does not attempt to implement distributed-memory parallel matrix operations.
- Note
- This class has specializations for ScalarType=float and double, which use the BLAS library directly. If you configure Teuchos to enable complex arithmetic support, via the CMake option -DTeuchos_ENABLE_COMPLEX:BOOL=ON, then this class will also invoke the BLAS library directly for ScalarType=std::complex<float> and std::complex<double>.
Definition at line 212 of file Teuchos_BLAS.hpp.