45 RCP<Tempus::IntegratorBasic<double>> integrator;
46 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
47 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
48 std::vector<double> StepSize;
49 std::vector<double> xErrorNorm;
50 std::vector<double> xDotErrorNorm;
51 const int nTimeStepSizes = 10;
55 RCP<ParameterList> pList = getParametersFromXmlFile(
56 "Tempus_Test_NewmarkImplicitAForm_HarmonicOscillator_Damped_SecondOrder."
60 RCP<ParameterList> hom_pl = sublist(pList,
"HarmonicOscillatorModel",
true);
61 RCP<HarmonicOscillatorModel<double>> model =
65 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
70 double dt = pl->sublist(
"Default Integrator")
71 .sublist(
"Time Step Control")
72 .get<
double>(
"Initial Time Step");
75 for (
int n = 0; n < nTimeStepSizes; n++) {
78 out <<
"\n \n time step #" << n <<
" (out of " << nTimeStepSizes - 1
79 <<
"), dt = " << dt <<
"\n";
80 pl->sublist(
"Default Integrator")
81 .sublist(
"Time Step Control")
82 .set(
"Initial Time Step", dt);
83 integrator = Tempus::createIntegratorBasic<double>(pl, model);
86 bool integratorStatus = integrator->advanceTime();
87 TEST_ASSERT(integratorStatus)
90 time = integrator->getTime();
91 double timeFinal = pl->sublist(
"Default Integrator")
92 .sublist(
"Time Step Control")
93 .get<
double>(
"Final Time");
94 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
98 RCP<const SolutionHistory<double>> solutionHistory =
99 integrator->getSolutionHistory();
101 "Tempus_Test_NewmarkImplicitAForm_HarmonicOscillator_Damped_"
105 RCP<Tempus::SolutionHistory<double>> solnHistExact =
107 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
108 double time_i = (*solutionHistory)[i]->getTime();
111 model->getExactSolution(time_i).get_x()),
113 model->getExactSolution(time_i).get_x_dot()));
114 state->setTime((*solutionHistory)[i]->getTime());
115 solnHistExact->addState(state);
118 "Tempus_Test_NewmarkImplicitAForm_HarmonicOscillator_Damped_"
119 "SecondOrder-Ref.dat",
124 StepSize.push_back(dt);
125 auto solution = Thyra::createMember(model->get_x_space());
126 Thyra::copy(*(integrator->getX()), solution.ptr());
127 solutions.push_back(solution);
128 auto solutionDot = Thyra::createMember(model->get_x_space());
129 Thyra::copy(*(integrator->getXDot()), solutionDot.ptr());
130 solutionsDot.push_back(solutionDot);
131 if (n == nTimeStepSizes - 1) {
132 StepSize.push_back(0.0);
133 auto solutionExact = Thyra::createMember(model->get_x_space());
134 Thyra::copy(*(model->getExactSolution(time).get_x()),
135 solutionExact.ptr());
136 solutions.push_back(solutionExact);
137 auto solutionDotExact = Thyra::createMember(model->get_x_space());
138 Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
139 solutionDotExact.ptr());
140 solutionsDot.push_back(solutionDotExact);
146 double xDotSlope = 0.0;
147 RCP<Tempus::Stepper<double>> stepper = integrator->getStepper();
148 double order = stepper->getOrder();
150 "Tempus_Test_NewmarkImplicitAForm_HarmonicOscillator_Damped_SecondOrder_"
152 stepper, StepSize, solutions, xErrorNorm, xSlope, solutionsDot,
153 xDotErrorNorm, xDotSlope, out);
155 TEST_FLOATING_EQUALITY(xSlope, order, 0.01);
156 TEST_FLOATING_EQUALITY(xErrorNorm[0], 0.0484483, 1.0e-4);
157 TEST_FLOATING_EQUALITY(xDotSlope, order, 0.01);
158 TEST_FLOATING_EQUALITY(xDotErrorNorm[0], 0.0484483, 1.0e-4);
160 Teuchos::TimeMonitor::summarize();
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar > > stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope, Teuchos::FancyOStream &out)