45 RCP<Tempus::IntegratorBasic<double>> integrator;
46 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
47 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
48 std::vector<double> StepSize;
49 std::vector<double> xErrorNorm;
50 std::vector<double> xDotErrorNorm;
51 const int nTimeStepSizes = 9;
55 RCP<ParameterList> pList =
56 getParametersFromXmlFile(
"Tempus_Test_NewmarkExplicitAForm_SinCos.xml");
59 RCP<ParameterList> hom_pl = sublist(pList,
"HarmonicOscillatorModel",
true);
60 RCP<HarmonicOscillatorModel<double>> model =
64 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
65 RCP<ParameterList> stepperPL = sublist(pl,
"Default Stepper",
true);
66 stepperPL->remove(
"Zero Initial Guess");
71 double dt = pl->sublist(
"Default Integrator")
72 .sublist(
"Time Step Control")
73 .get<
double>(
"Initial Time Step");
76 for (
int n = 0; n < nTimeStepSizes; n++) {
79 out <<
"\n \n time step #" << n <<
" (out of " << nTimeStepSizes - 1
80 <<
"), dt = " << dt <<
"\n";
81 pl->sublist(
"Default Integrator")
82 .sublist(
"Time Step Control")
83 .set(
"Initial Time Step", dt);
84 integrator = Tempus::createIntegratorBasic<double>(pl, model);
87 bool integratorStatus = integrator->advanceTime();
88 TEST_ASSERT(integratorStatus)
91 time = integrator->getTime();
92 double timeFinal = pl->sublist(
"Default Integrator")
93 .sublist(
"Time Step Control")
94 .get<
double>(
"Final Time");
95 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
99 RCP<const SolutionHistory<double>> solutionHistory =
100 integrator->getSolutionHistory();
104 RCP<Tempus::SolutionHistory<double>> solnHistExact =
106 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
107 double time_i = (*solutionHistory)[i]->getTime();
110 model->getExactSolution(time_i).get_x()),
112 model->getExactSolution(time_i).get_x_dot()));
113 state->setTime((*solutionHistory)[i]->getTime());
114 solnHistExact->addState(state);
116 writeSolution(
"Tempus_Test_NewmarkExplicitAForm_SinCos-Ref.dat",
121 StepSize.push_back(dt);
122 auto solution = Thyra::createMember(model->get_x_space());
123 Thyra::copy(*(integrator->getX()), solution.ptr());
124 solutions.push_back(solution);
125 auto solutionDot = Thyra::createMember(model->get_x_space());
126 Thyra::copy(*(integrator->getXDot()), solutionDot.ptr());
127 solutionsDot.push_back(solutionDot);
128 if (n == nTimeStepSizes - 1) {
129 StepSize.push_back(0.0);
130 auto solutionExact = Thyra::createMember(model->get_x_space());
131 Thyra::copy(*(model->getExactSolution(time).get_x()),
132 solutionExact.ptr());
133 solutions.push_back(solutionExact);
134 auto solutionDotExact = Thyra::createMember(model->get_x_space());
135 Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
136 solutionDotExact.ptr());
137 solutionsDot.push_back(solutionDotExact);
143 double xDotSlope = 0.0;
144 RCP<Tempus::Stepper<double>> stepper = integrator->getStepper();
145 double order = stepper->getOrder();
146 writeOrderError(
"Tempus_Test_NewmarkExplicitAForm_SinCos-Error.dat", stepper,
147 StepSize, solutions, xErrorNorm, xSlope, solutionsDot,
148 xDotErrorNorm, xDotSlope, out);
150 TEST_FLOATING_EQUALITY(xSlope, order, 0.02);
151 TEST_FLOATING_EQUALITY(xErrorNorm[0], 0.0157928, 1.0e-4);
152 TEST_FLOATING_EQUALITY(xDotSlope, order, 0.02);
153 TEST_FLOATING_EQUALITY(xDotErrorNorm[0], 0.233045, 1.0e-4);
155 Teuchos::TimeMonitor::summarize();
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar > > stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar > > > &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope, Teuchos::FancyOStream &out)