45 std::vector<std::string> RKMethods;
46 RKMethods.push_back(
"RK Forward Euler");
47 RKMethods.push_back(
"RK Explicit 4 Stage");
48 RKMethods.push_back(
"RK Explicit 3/8 Rule");
49 RKMethods.push_back(
"RK Explicit 4 Stage 3rd order by Runge");
50 RKMethods.push_back(
"RK Explicit 5 Stage 3rd order by Kinnmark and Gray");
51 RKMethods.push_back(
"RK Explicit 3 Stage 3rd order");
52 RKMethods.push_back(
"RK Explicit 3 Stage 3rd order TVD");
53 RKMethods.push_back(
"RK Explicit 3 Stage 3rd order by Heun");
54 RKMethods.push_back(
"RK Explicit Midpoint");
55 RKMethods.push_back(
"RK Explicit Trapezoidal");
56 RKMethods.push_back(
"Heuns Method");
57 RKMethods.push_back(
"General ERK");
59 std::vector<double> RKMethodErrors;
60 RKMethodErrors.push_back(0.154904);
61 RKMethodErrors.push_back(4.55982e-06);
62 RKMethodErrors.push_back(4.79132e-06);
63 RKMethodErrors.push_back(0.000113603);
64 RKMethodErrors.push_back(4.98796e-05);
65 RKMethodErrors.push_back(0.00014564);
66 RKMethodErrors.push_back(0.000121968);
67 RKMethodErrors.push_back(0.000109495);
68 RKMethodErrors.push_back(0.00559871);
69 RKMethodErrors.push_back(0.00710492);
70 RKMethodErrors.push_back(0.00710492);
71 RKMethodErrors.push_back(4.55982e-06);
73 Teuchos::RCP<const Teuchos::Comm<int> > comm =
74 Teuchos::DefaultComm<int>::getComm();
76 for (std::vector<std::string>::size_type m = 0; m != RKMethods.size(); m++) {
77 std::string RKMethod_ = RKMethods[m];
78 std::replace(RKMethod_.begin(), RKMethod_.end(),
' ',
'_');
79 std::replace(RKMethod_.begin(), RKMethod_.end(),
'/',
'.');
80 std::vector<double> StepSize;
81 std::vector<double> ErrorNorm;
82 const int nTimeStepSizes = 6;
85 for (
int n = 0; n < nTimeStepSizes; n++) {
87 RCP<ParameterList> pList =
88 getParametersFromXmlFile(
"Tempus_ExplicitRK_SinCos.xml");
91 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
92 RCP<SinCosModel<double> > model =
96 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
97 if (RKMethods[m] ==
"General ERK") {
98 pl->sublist(
"Demo Integrator").set(
"Stepper Name",
"Demo Stepper 2");
99 pl->sublist(
"Demo Stepper 2")
100 .set(
"Initial Condition Consistency",
"None");
101 pl->sublist(
"Demo Stepper 2")
102 .set(
"Initial Condition Consistency Check",
false);
105 pl->sublist(
"Demo Stepper").set(
"Stepper Type", RKMethods[m]);
106 pl->sublist(
"Demo Stepper")
107 .set(
"Initial Condition Consistency",
"None");
108 pl->sublist(
"Demo Stepper")
109 .set(
"Initial Condition Consistency Check",
false);
115 ParameterList& sens_pl = pl->sublist(
"Sensitivities");
116 sens_pl.set(
"Mass Matrix Is Identity",
true);
117 ParameterList& interp_pl = pl->sublist(
"Demo Integrator")
118 .sublist(
"Solution History")
119 .sublist(
"Interpolator");
120 interp_pl.set(
"Interpolator Type",
"Lagrange");
121 interp_pl.set(
"Order", 3);
124 pl->sublist(
"Demo Integrator")
125 .sublist(
"Time Step Control")
126 .set(
"Initial Time Step", dt);
127 RCP<Tempus::IntegratorAdjointSensitivity<double> > integrator =
128 Tempus::createIntegratorAdjointSensitivity<double>(pl, model);
129 order = integrator->getStepper()->getOrder();
132 double t0 = pl->sublist(
"Demo Integrator")
133 .sublist(
"Time Step Control")
134 .get<
double>(
"Initial Time");
137 RCP<Thyra::VectorBase<double> > x0 =
138 model->getNominalValues().get_x()->clone_v();
139 const int num_param = model->get_p_space(0)->dim();
140 RCP<Thyra::MultiVectorBase<double> > DxDp0 =
141 Thyra::createMembers(model->get_x_space(), num_param);
142 for (
int i = 0; i < num_param; ++i)
143 Thyra::assign(DxDp0->col(i).ptr(),
144 *(model->getExactSensSolution(i, t0).get_x()));
145 integrator->initializeSolutionHistory(t0, x0, Teuchos::null,
146 Teuchos::null, DxDp0, Teuchos::null,
150 bool integratorStatus = integrator->advanceTime();
151 TEST_ASSERT(integratorStatus)
154 double time = integrator->getTime();
155 double timeFinal = pl->sublist(
"Demo Integrator")
156 .sublist(
"Time Step Control")
157 .get<
double>(
"Final Time");
158 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
163 RCP<const Thyra::VectorBase<double> > x = integrator->getX();
164 RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
165 RCP<Thyra::MultiVectorBase<double> > DxDp =
166 Thyra::createMembers(model->get_x_space(), num_param);
168 Thyra::ConstDetachedMultiVectorView<double> dgdp_view(*DgDp);
169 Thyra::DetachedMultiVectorView<double> dxdp_view(*DxDp);
170 const int num_g = DgDp->domain()->dim();
171 for (
int i = 0; i < num_g; ++i)
172 for (
int j = 0; j < num_param; ++j) dxdp_view(i, j) = dgdp_view(j, i);
174 RCP<const Thyra::VectorBase<double> > x_exact =
175 model->getExactSolution(time).get_x();
176 RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
177 Thyra::createMembers(model->get_x_space(), num_param);
178 for (
int i = 0; i < num_param; ++i)
179 Thyra::assign(DxDp_exact->col(i).ptr(),
180 *(model->getExactSensSolution(i, time).get_x()));
183 if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
184 typedef Thyra::DefaultProductVector<double> DPV;
185 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
187 std::ofstream ftmp(
"Tempus_" + RKMethod_ +
"_SinCos_AdjSens.dat");
188 RCP<const SolutionHistory<double> > solutionHistory =
189 integrator->getSolutionHistory();
190 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
191 RCP<const SolutionState<double> > solutionState =
192 (*solutionHistory)[i];
193 const double time_i = solutionState->getTime();
194 RCP<const DPV> x_prod_plot =
195 Teuchos::rcp_dynamic_cast<const DPV>(solutionState->getX());
196 RCP<const Thyra::VectorBase<double> > x_plot =
197 x_prod_plot->getVectorBlock(0);
198 RCP<const DMVPV> adjoint_prod_plot =
199 Teuchos::rcp_dynamic_cast<const DMVPV>(
200 x_prod_plot->getVectorBlock(1));
201 RCP<const Thyra::MultiVectorBase<double> > adjoint_plot =
202 adjoint_prod_plot->getMultiVector();
203 RCP<const Thyra::VectorBase<double> > x_exact_plot =
204 model->getExactSolution(time_i).get_x();
205 ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
206 << get_ele(*(x_plot), 0) << std::setw(11)
207 << get_ele(*(x_plot), 1) << std::setw(11)
208 << get_ele(*(adjoint_plot->col(0)), 0) << std::setw(11)
209 << get_ele(*(adjoint_plot->col(0)), 1) << std::setw(11)
210 << get_ele(*(adjoint_plot->col(1)), 0) << std::setw(11)
211 << get_ele(*(adjoint_plot->col(1)), 1) << std::setw(11)
212 << get_ele(*(x_exact_plot), 0) << std::setw(11)
213 << get_ele(*(x_exact_plot), 1) << std::endl;
219 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
220 RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
221 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
222 Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
223 StepSize.push_back(dt);
224 double L2norm = Thyra::norm_2(*xdiff);
226 Teuchos::Array<double> L2norm_DxDp(num_param);
227 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
228 for (
int i = 0; i < num_param; ++i)
229 L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
230 L2norm = std::sqrt(L2norm);
231 ErrorNorm.push_back(L2norm);
238 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
239 out <<
" Stepper = " << RKMethods[m] << std::endl;
240 out <<
" =========================" << std::endl;
241 out <<
" Expected order: " << order << std::endl;
242 out <<
" Observed order: " << slope << std::endl;
243 out <<
" =========================" << std::endl;
244 TEST_FLOATING_EQUALITY(slope, order, 0.015);
245 TEST_FLOATING_EQUALITY(ErrorNorm[0], RKMethodErrors[m], 1.0e-4);
247 if (comm->getRank() == 0) {
248 std::ofstream ftmp(
"Tempus_" + RKMethod_ +
"_SinCos_AdjSens-Error.dat");
249 double error0 = 0.8 * ErrorNorm[0];
250 for (
int n = 0; n < nTimeStepSizes; n++) {
251 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
252 << error0 * (pow(StepSize[n] / StepSize[0], order)) << std::endl;
258 Teuchos::TimeMonitor::summarize();