44 const bool use_combined_method,
45 const bool use_dfdp_as_tangent, Teuchos::FancyOStream& out,
48 std::vector<std::string> RKMethods;
49 RKMethods.push_back(
"General DIRK");
50 RKMethods.push_back(
"RK Backward Euler");
51 RKMethods.push_back(
"DIRK 1 Stage Theta Method");
52 RKMethods.push_back(
"RK Implicit 1 Stage 1st order Radau IA");
53 RKMethods.push_back(
"RK Implicit Midpoint");
54 RKMethods.push_back(
"SDIRK 2 Stage 2nd order");
55 RKMethods.push_back(
"RK Implicit 2 Stage 2nd order Lobatto IIIB");
56 RKMethods.push_back(
"SDIRK 2 Stage 3rd order");
57 RKMethods.push_back(
"EDIRK 2 Stage 3rd order");
58 RKMethods.push_back(
"EDIRK 2 Stage Theta Method");
59 RKMethods.push_back(
"SDIRK 3 Stage 4th order");
60 RKMethods.push_back(
"SDIRK 5 Stage 4th order");
61 RKMethods.push_back(
"SDIRK 5 Stage 5th order");
62 RKMethods.push_back(
"SDIRK 2(1) Pair");
63 RKMethods.push_back(
"RK Trapezoidal Rule");
64 RKMethods.push_back(
"RK Crank-Nicolson");
68 auto it = std::find(RKMethods.begin(), RKMethods.end(),
method_name);
69 TEUCHOS_TEST_FOR_EXCEPTION(
70 it == RKMethods.end(), std::logic_error,
74 std::vector<double> RKMethodErrors;
75 if (use_combined_method) {
76 RKMethodErrors.push_back(0.000144507);
77 RKMethodErrors.push_back(0.0428449);
78 RKMethodErrors.push_back(0.000297933);
79 RKMethodErrors.push_back(0.0428449);
80 RKMethodErrors.push_back(0.000297933);
81 RKMethodErrors.push_back(0.000144507);
82 RKMethodErrors.push_back(0.000297933);
83 RKMethodErrors.push_back(8.65434e-06);
84 RKMethodErrors.push_back(1.3468e-06);
85 RKMethodErrors.push_back(0.000297933);
86 RKMethodErrors.push_back(5.44037e-07);
87 RKMethodErrors.push_back(2.77342e-09);
88 RKMethodErrors.push_back(1.21689e-10);
89 RKMethodErrors.push_back(0.000603848);
90 RKMethodErrors.push_back(0.000297933);
91 RKMethodErrors.push_back(0.000297933);
94 RKMethodErrors.push_back(0.000125232);
95 RKMethodErrors.push_back(0.0428449);
96 RKMethodErrors.push_back(0.000221049);
97 RKMethodErrors.push_back(0.0383339);
98 RKMethodErrors.push_back(0.000221049);
99 RKMethodErrors.push_back(0.000125232);
100 RKMethodErrors.push_back(0.000272997);
101 RKMethodErrors.push_back(4.79475e-06);
102 RKMethodErrors.push_back(9.63899e-07);
103 RKMethodErrors.push_back(0.000297933);
104 RKMethodErrors.push_back(2.9362e-07);
105 RKMethodErrors.push_back(9.20081e-08);
106 RKMethodErrors.push_back(9.16252e-08);
107 RKMethodErrors.push_back(0.00043969);
108 RKMethodErrors.push_back(0.000297933);
109 RKMethodErrors.push_back(0.000297933);
112 Teuchos::RCP<const Teuchos::Comm<int> > comm =
113 Teuchos::DefaultComm<int>::getComm();
115 for (std::vector<std::string>::size_type m = 0; m != RKMethods.size(); m++) {
119 std::string RKMethod_ = RKMethods[m];
120 std::replace(RKMethod_.begin(), RKMethod_.end(),
' ',
'_');
121 std::replace(RKMethod_.begin(), RKMethod_.end(),
'/',
'.');
122 std::vector<double> StepSize;
123 std::vector<double> ErrorNorm;
124 const int nTimeStepSizes = 3;
127 for (
int n = 0; n < nTimeStepSizes; n++) {
129 RCP<ParameterList> pList =
130 getParametersFromXmlFile(
"Tempus_DIRK_SinCos.xml");
133 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
134 scm_pl->set(
"Use DfDp as Tangent", use_dfdp_as_tangent);
135 RCP<SinCosModel<double> > model =
139 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
140 pl->sublist(
"Default Stepper").set(
"Stepper Type", RKMethods[m]);
141 if (RKMethods[m] ==
"SDIRK 2 Stage 2nd order") {
142 pl->sublist(
"Default Stepper").set(
"gamma", 0.2928932188134524);
144 else if (RKMethods[m] ==
"SDIRK 2 Stage 3rd order") {
145 pl->sublist(
"Default Stepper")
146 .set<std::string>(
"Gamma Type",
"3rd Order A-stable");
152 ParameterList& sens_pl = pl->sublist(
"Sensitivities");
153 if (use_combined_method)
154 sens_pl.set(
"Sensitivity Method",
"Combined");
156 sens_pl.set(
"Sensitivity Method",
"Staggered");
157 sens_pl.set(
"Use DfDp as Tangent", use_dfdp_as_tangent);
158 ParameterList& interp_pl = pl->sublist(
"Default Integrator")
159 .sublist(
"Solution History")
160 .sublist(
"Interpolator");
161 interp_pl.set(
"Interpolator Type",
"Lagrange");
162 interp_pl.set(
"Order", 4);
165 pl->sublist(
"Default Integrator")
166 .sublist(
"Time Step Control")
167 .set(
"Initial Time Step", dt);
168 RCP<Tempus::IntegratorForwardSensitivity<double> > integrator =
169 Tempus::createIntegratorForwardSensitivity<double>(pl, model);
170 order = integrator->getStepper()->getOrder();
177 RCP<Thyra::VectorBase<double> > x0 =
178 model->getNominalValues().get_x()->clone_v();
179 const int num_param = model->get_p_space(0)->dim();
180 RCP<Thyra::MultiVectorBase<double> > DxDp0 =
181 Thyra::createMembers(model->get_x_space(), num_param);
182 for (
int i = 0; i < num_param; ++i)
183 Thyra::assign(DxDp0->col(i).ptr(),
184 *(model->getExactSensSolution(i, 0.0).get_x()));
185 integrator->initializeSolutionHistory(0.0, x0, Teuchos::null,
186 Teuchos::null, DxDp0, Teuchos::null,
190 bool integratorStatus = integrator->advanceTime();
191 TEST_ASSERT(integratorStatus)
194 double time = integrator->getTime();
195 double timeFinal = pl->sublist(
"Default Integrator")
196 .sublist(
"Time Step Control")
197 .get<
double>(
"Final Time");
198 double tol = 100.0 * std::numeric_limits<double>::epsilon();
199 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
202 RCP<const Thyra::VectorBase<double> > x = integrator->getX();
203 RCP<const Thyra::MultiVectorBase<double> > DxDp = integrator->getDxDp();
204 RCP<const Thyra::VectorBase<double> > x_exact =
205 model->getExactSolution(time).get_x();
206 RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
207 Thyra::createMembers(model->get_x_space(), num_param);
208 for (
int i = 0; i < num_param; ++i)
209 Thyra::assign(DxDp_exact->col(i).ptr(),
210 *(model->getExactSensSolution(i, time).get_x()));
213 if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
214 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
216 std::ofstream ftmp(
"Tempus_" + RKMethod_ +
"_SinCos_Sens.dat");
217 RCP<const SolutionHistory<double> > solutionHistory =
218 integrator->getSolutionHistory();
219 RCP<Thyra::MultiVectorBase<double> > DxDp_exact_plot =
220 Thyra::createMembers(model->get_x_space(), num_param);
221 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
222 RCP<const SolutionState<double> > solutionState =
223 (*solutionHistory)[i];
224 double time_i = solutionState->getTime();
225 RCP<const DMVPV> x_prod_plot =
226 Teuchos::rcp_dynamic_cast<const DMVPV>(solutionState->getX());
227 RCP<const Thyra::VectorBase<double> > x_plot =
228 x_prod_plot->getMultiVector()->col(0);
229 RCP<const Thyra::MultiVectorBase<double> > DxDp_plot =
230 x_prod_plot->getMultiVector()->subView(
231 Teuchos::Range1D(1, num_param));
232 RCP<const Thyra::VectorBase<double> > x_exact_plot =
233 model->getExactSolution(time_i).get_x();
234 for (
int j = 0; j < num_param; ++j)
235 Thyra::assign(DxDp_exact_plot->col(j).ptr(),
236 *(model->getExactSensSolution(j, time_i).get_x()));
237 ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
238 << get_ele(*(x_plot), 0) << std::setw(11)
239 << get_ele(*(x_plot), 1);
240 for (
int j = 0; j < num_param; ++j)
241 ftmp << std::setw(11) << get_ele(*(DxDp_plot->col(j)), 0)
242 << std::setw(11) << get_ele(*(DxDp_plot->col(j)), 1);
243 ftmp << std::setw(11) << get_ele(*(x_exact_plot), 0) << std::setw(11)
244 << get_ele(*(x_exact_plot), 1);
245 for (
int j = 0; j < num_param; ++j)
246 ftmp << std::setw(11) << get_ele(*(DxDp_exact_plot->col(j)), 0)
247 << std::setw(11) << get_ele(*(DxDp_exact_plot->col(j)), 1);
254 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
255 RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
256 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
257 Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
258 StepSize.push_back(dt);
259 double L2norm = Thyra::norm_2(*xdiff);
261 Teuchos::Array<double> L2norm_DxDp(num_param);
262 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
263 for (
int i = 0; i < num_param; ++i)
264 L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
265 L2norm = std::sqrt(L2norm);
266 ErrorNorm.push_back(L2norm);
272 if (comm->getRank() == 0) {
273 std::ofstream ftmp(
"Tempus_" + RKMethod_ +
"_SinCos_Sens-Error.dat");
274 double error0 = 0.8 * ErrorNorm[0];
275 for (
int n = 0; n < (int)StepSize.size(); n++) {
276 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
277 << error0 * (pow(StepSize[n] / StepSize[0], order)) << std::endl;
291 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
292 out <<
" Stepper = " << RKMethods[m] << std::endl;
293 out <<
" =========================" << std::endl;
294 out <<
" Expected order: " << order << std::endl;
295 out <<
" Observed order: " << slope << std::endl;
296 out <<
" =========================" << std::endl;
299 double order_expected = use_combined_method ? order : std::min(order, 4.0);
300 TEST_FLOATING_EQUALITY(slope, order_expected, 0.03);
301 TEST_FLOATING_EQUALITY(ErrorNorm[0], RKMethodErrors[m], 5.0e-4);
303 Teuchos::TimeMonitor::summarize();