47 std::vector<double> StepSize;
48 std::vector<double> ErrorNorm;
49 const int nTimeStepSizes = 7;
52 Teuchos::RCP<const Teuchos::Comm<int> > comm =
53 Teuchos::DefaultComm<int>::getComm();
54 for (
int n = 0; n < nTimeStepSizes; n++) {
56 RCP<ParameterList> pList =
57 getParametersFromXmlFile(
"Tempus_BDF2_SinCos_SA.xml");
60 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
61 RCP<SinCosModel<double> > model =
67 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
69 ParameterList& interp_pl = pl->sublist(
"Default Integrator")
70 .sublist(
"Solution History")
71 .sublist(
"Interpolator");
72 interp_pl.set(
"Interpolator Type",
"Lagrange");
73 interp_pl.set(
"Order", 1);
76 pl->sublist(
"Default Integrator")
77 .sublist(
"Time Step Control")
78 .set(
"Initial Time Step", dt);
79 RCP<Tempus::IntegratorAdjointSensitivity<double> > integrator =
80 Tempus::createIntegratorAdjointSensitivity<double>(pl, model);
81 order = integrator->getStepper()->getOrder();
84 double t0 = pl->sublist(
"Default Integrator")
85 .sublist(
"Time Step Control")
86 .get<
double>(
"Initial Time");
87 RCP<const Thyra::VectorBase<double> > x0 =
88 model->getExactSolution(t0).get_x();
89 const int num_param = model->get_p_space(0)->dim();
90 RCP<Thyra::MultiVectorBase<double> > DxDp0 =
91 Thyra::createMembers(model->get_x_space(), num_param);
92 for (
int i = 0; i < num_param; ++i)
93 Thyra::assign(DxDp0->col(i).ptr(),
94 *(model->getExactSensSolution(i, t0).get_x()));
95 integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
96 DxDp0, Teuchos::null, Teuchos::null);
99 bool integratorStatus = integrator->advanceTime();
100 TEST_ASSERT(integratorStatus)
103 double time = integrator->getTime();
104 double timeFinal = pl->sublist(
"Default Integrator")
105 .sublist(
"Time Step Control")
106 .get<
double>(
"Final Time");
107 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
112 RCP<const Thyra::VectorBase<double> > x = integrator->getX();
113 RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
114 RCP<Thyra::MultiVectorBase<double> > DxDp =
115 Thyra::createMembers(model->get_x_space(), num_param);
117 Thyra::ConstDetachedMultiVectorView<double> dgdp_view(*DgDp);
118 Thyra::DetachedMultiVectorView<double> dxdp_view(*DxDp);
119 const int num_g = DgDp->domain()->dim();
120 for (
int i = 0; i < num_g; ++i)
121 for (
int j = 0; j < num_param; ++j) dxdp_view(i, j) = dgdp_view(j, i);
123 RCP<const Thyra::VectorBase<double> > x_exact =
124 model->getExactSolution(time).get_x();
125 RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
126 Thyra::createMembers(model->get_x_space(), num_param);
127 for (
int i = 0; i < num_param; ++i)
128 Thyra::assign(DxDp_exact->col(i).ptr(),
129 *(model->getExactSensSolution(i, time).get_x()));
132 if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
133 typedef Thyra::DefaultProductVector<double> DPV;
134 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
136 std::ofstream ftmp(
"Tempus_BDF2_SinCos_AdjSens.dat");
137 RCP<const SolutionHistory<double> > solutionHistory =
138 integrator->getSolutionHistory();
139 for (
int i = 0; i < solutionHistory->getNumStates(); i++) {
140 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
141 const double time_i = solutionState->getTime();
142 RCP<const DPV> x_prod_plot =
143 Teuchos::rcp_dynamic_cast<const DPV>(solutionState->getX());
144 RCP<const Thyra::VectorBase<double> > x_plot =
145 x_prod_plot->getVectorBlock(0);
146 RCP<const DMVPV> adjoint_prod_plot =
147 Teuchos::rcp_dynamic_cast<const DMVPV>(
148 x_prod_plot->getVectorBlock(1));
149 RCP<const Thyra::MultiVectorBase<double> > adjoint_plot =
150 adjoint_prod_plot->getMultiVector();
151 RCP<const Thyra::VectorBase<double> > x_exact_plot =
152 model->getExactSolution(time_i).get_x();
153 ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
154 << get_ele(*(x_plot), 0) << std::setw(11) << get_ele(*(x_plot), 1)
155 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
156 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
157 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
158 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
159 << std::setw(11) << get_ele(*(x_exact_plot), 0) << std::setw(11)
160 << get_ele(*(x_exact_plot), 1) << std::endl;
166 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
167 RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
168 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
169 Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
170 StepSize.push_back(dt);
171 double L2norm = Thyra::norm_2(*xdiff);
173 Teuchos::Array<double> L2norm_DxDp(num_param);
174 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
175 for (
int i = 0; i < num_param; ++i)
176 L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
177 L2norm = std::sqrt(L2norm);
178 ErrorNorm.push_back(L2norm);
185 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
186 out <<
" Stepper = BDF2" << std::endl;
187 out <<
" =========================" << std::endl;
188 out <<
" Expected order: " << order << std::endl;
189 out <<
" Observed order: " << slope << std::endl;
190 out <<
" =========================" << std::endl;
191 TEST_FLOATING_EQUALITY(slope, 1.95006, 0.015);
192 TEST_FLOATING_EQUALITY(ErrorNorm[0], 0.0137394, 1.0e-4);
194 if (comm->getRank() == 0) {
195 std::ofstream ftmp(
"Tempus_BDF2_SinCos_AdjSens-Error.dat");
196 double error0 = 0.8 * ErrorNorm[0];
197 for (
int n = 0; n < nTimeStepSizes; n++) {
198 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
199 << error0 * (StepSize[n] / StepSize[0]) << std::endl;