|
Stokhos Development
|
Class representing an exponential covariance function and its KL eigevalues/eigenfunctions. More...
#include <Stokhos_KL_OneDExponentialCovarianceFunction.hpp>
Classes | |
| struct | EigFuncCos |
| Nonlinear function whose roots define eigenvalues for cos() eigenfunction. More... | |
| struct | EigFuncSin |
| Nonlinear function whose roots define eigenvalues for sin() eigenfunction. More... | |
Public Types | |
| typedef ExponentialOneDEigenFunction< value_type > | eigen_function_type |
| typedef OneDEigenPair< eigen_function_type > | eigen_pair_type |
Public Member Functions | |
| OneDExponentialCovarianceFunction (int M, const value_type &a, const value_type &b, const value_type &L, const int dim_name, Teuchos::ParameterList &solverParams) | |
| Constructor. | |
| ~OneDExponentialCovarianceFunction () | |
| Destructor. | |
| value_type | evaluateCovariance (const value_type &x, const value_type &xp) const |
| Evaluate covariance. | |
| const Teuchos::Array< eigen_pair_type > & | getEigenPairs () const |
| Get eigenpairs. | |
Protected Types | |
| typedef Teuchos::ScalarTraits< value_type >::magnitudeType | magnitude_type |
Protected Attributes | |
| value_type | L |
| Correlation length. | |
| Teuchos::Array< eigen_pair_type > | eig_pair |
| Eigenpairs. | |
Class representing an exponential covariance function and its KL eigevalues/eigenfunctions.
This class provides the exponential covariance function
![\[
\mbox{cov}(x,x') = \exp(-|x-x'|/L).
\]](form_92.png)
The corresponding eigenfunctions can be shown to be 

![$x\in[a,b]$](form_95.png)


![\[
1 - L\omega_n\tan(\omega_n\alpha) = 0
\]](form_98.png)
and
![\[
L\omega^\ast_n + \tan(\omega^\ast_n\alpha) = 0
\]](form_99.png)
respectively, where 

![\[
A_n = \frac{1}{\left(\int_a^b\cos^2(\omega_n(x-\beta)) dx\right)^{1/2}}
= \frac{1}{\sqrt{\alpha + \frac{\sin(2\omega_n\alpha)}{2\omega_n}}},
\]](form_102.png)
![\[
B_n
= \frac{1}{\left(\int_a^b\sin^2(\omega^\ast_n(x-\beta)) dx\right)^{1/2}}
= \frac{1}{\sqrt{\alpha - \frac{\sin(2\omega_n^\ast\alpha)}{2\omega^\ast_n}}}
\]](form_103.png)
and the corresponding eigenvalues are given by
![\[
\lambda_n = \frac{2L}{(L\omega_n)^2 + 1}
\]](form_104.png)
and
![\[
\lambda^\ast_n = \frac{2L}{(L\omega^\ast_n)^2 + 1}.
\]](form_105.png)
It is straightforward to show that for each 


For a given value of 



Data for the root solver is passed through a Teuchos::ParameterList, which accepts the following parameters:

