ROL
zakharov/example_01.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
14#define USE_HESSVEC 1
15
16#include "ROL_Algorithm.hpp"
18#include "ROL_RandomVector.hpp"
19#include "ROL_StatusTest.hpp"
20#include "ROL_StdVector.hpp"
21#include "ROL_Zakharov.hpp"
22#include "ROL_ParameterList.hpp"
24#include "ROL_Stream.hpp"
25#include "ROL_GlobalMPISession.hpp"
26
27#include <iostream>
28
29typedef double RealT;
30
31int main(int argc, char *argv[]) {
32
33 typedef std::vector<RealT> vector;
34 typedef ROL::Vector<RealT> V; // Abstract vector
35 typedef ROL::StdVector<RealT> SV; // Concrete vector containing std::vector data
36
37 ROL::GlobalMPISession mpiSession(&argc, &argv);
38
39 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
40 auto outStream = ROL::makeStreamPtr( std::cout, argc > 1 );
41
42 int errorFlag = 0;
43
44 // *** Example body.
45
46 try {
47
48 int dim = 10; // Set problem dimension.
49
50 std::string paramfile = "parameters.xml";
51 auto parlist = ROL::getParametersFromXmlFile( paramfile );
52
53 // Define algorithm.
54 ROL::Ptr<ROL::Step<RealT>>
55 step = ROL::makePtr<ROL::TrustRegionStep<RealT>>(*parlist);
56 ROL::Ptr<ROL::StatusTest<RealT>>
57 status = ROL::makePtr<ROL::StatusTest<RealT>>(*parlist);
58 ROL::Algorithm<RealT> algo(step,status,false);
59
60 // Iteration vector.
61 ROL::Ptr<vector> x_ptr = ROL::makePtr<vector>(dim, 0.0);
62
63 // Vector of natural numbers.
64 ROL::Ptr<vector> k_ptr = ROL::makePtr<vector>(dim, 0.0);
65
66 // For gradient and Hessian checks.
67 ROL::Ptr<vector> xtest_ptr = ROL::makePtr<vector>(dim, 0.0);
68 ROL::Ptr<vector> d_ptr = ROL::makePtr<vector>(dim, 0.0);
69 ROL::Ptr<vector> v_ptr = ROL::makePtr<vector>(dim, 0.0);
70 ROL::Ptr<vector> hv_ptr = ROL::makePtr<vector>(dim, 0.0);
71 ROL::Ptr<vector> ihhv_ptr = ROL::makePtr<vector>(dim, 0.0);
72
73
74 RealT left = -1e0, right = 1e0;
75 for (int i=0; i<dim; i++) {
76 (*x_ptr)[i] = 2;
77 (*k_ptr)[i] = i+1.0;
78 }
79
80 ROL::Ptr<V> k = ROL::makePtr<SV>(k_ptr);
81 SV x(x_ptr);
82
83 // Check gradient and Hessian.
84 SV xtest(xtest_ptr);
85 SV d(d_ptr);
86 SV v(v_ptr);
87 SV hv(hv_ptr);
88 SV ihhv(ihhv_ptr);
89
90 ROL::RandomizeVector( xtest, left, right );
91 ROL::RandomizeVector( d, left, right );
92 ROL::RandomizeVector( v, left, right );
93
95
96 obj.checkGradient(xtest, d, true, *outStream); *outStream << "\n";
97 obj.checkHessVec(xtest, v, true, *outStream); *outStream << "\n";
98 obj.checkHessSym(xtest, d, v, true, *outStream); *outStream << "\n";
99
100 // Check inverse Hessian.
101 RealT tol=0;
102 obj.hessVec(hv,v,xtest,tol);
103 obj.invHessVec(ihhv,hv,xtest,tol);
104 ihhv.axpy(-1,v);
105 *outStream << "Checking inverse Hessian" << std::endl;
106 *outStream << "||H^{-1}Hv-v|| = " << ihhv.norm() << std::endl;
107
108
109 // Run algorithm.
110 algo.run(x, obj, true, *outStream);
111
112 // Get True Solution
113 ROL::Ptr<vector> xtrue_ptr = ROL::makePtr<vector>(dim, 0.0);
114 SV xtrue(xtrue_ptr);
115
116
117 // Compute Error
118 x.axpy(-1.0, xtrue);
119 RealT abserr = x.norm();
120 *outStream << std::scientific << "\n Absolute Error: " << abserr << std::endl;
121 if ( abserr > sqrt(ROL::ROL_EPSILON<RealT>()) ) {
122 errorFlag += 1;
123 }
124 }
125 catch (std::logic_error& err) {
126 *outStream << err.what() << "\n";
127 errorFlag = -1000;
128 }; // end try
129
130 if (errorFlag != 0)
131 std::cout << "End Result: TEST FAILED\n";
132 else
133 std::cout << "End Result: TEST PASSED\n";
134
135 return 0;
136
137}
138
Vector< Real > V
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
Contains definitions for the Zakharov function as evaluated using only the ROL::Vector interface.
Provides an interface to run optimization algorithms.
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
virtual std::vector< Real > checkHessSym(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
Hessian symmetry check.
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Defines the linear algebra or vector space interface.
void invHessVec(Vector< Real > &ihv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply inverse Hessian approximation to vector.
void RandomizeVector(Vector< Real > &x, const Real &lower=0.0, const Real &upper=1.0)
Fill a ROL::Vector with uniformly-distributed random numbers in the interval [lower,...
constexpr auto dim
int main(int argc, char *argv[])
double RealT