ROL
zakharov/example_01.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
14#define USE_HESSVEC 1
15
16#include "ROL_Algorithm.hpp"
18#include "ROL_RandomVector.hpp"
19#include "ROL_StatusTest.hpp"
20#include "ROL_StdVector.hpp"
21#include "ROL_Zakharov.hpp"
22#include "ROL_ParameterList.hpp"
24#include "ROL_Stream.hpp"
25#include "Teuchos_GlobalMPISession.hpp"
26
27#include <iostream>
28
29typedef double RealT;
30
31int main(int argc, char *argv[]) {
32
33 using namespace Teuchos;
34
35 typedef std::vector<RealT> vector;
36 typedef ROL::Vector<RealT> V; // Abstract vector
37 typedef ROL::StdVector<RealT> SV; // Concrete vector containing std::vector data
38
39 GlobalMPISession mpiSession(&argc, &argv);
40
41 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
42 auto outStream = ROL::makeStreamPtr( std::cout, argc > 1 );
43
44 int errorFlag = 0;
45
46 // *** Example body.
47
48 try {
49
50 int dim = 10; // Set problem dimension.
51
52 std::string paramfile = "parameters.xml";
53 auto parlist = ROL::getParametersFromXmlFile( paramfile );
54
55 // Define algorithm.
56 ROL::Ptr<ROL::Step<RealT>>
57 step = ROL::makePtr<ROL::TrustRegionStep<RealT>>(*parlist);
58 ROL::Ptr<ROL::StatusTest<RealT>>
59 status = ROL::makePtr<ROL::StatusTest<RealT>>(*parlist);
60 ROL::Algorithm<RealT> algo(step,status,false);
61
62 // Iteration vector.
63 ROL::Ptr<vector> x_ptr = ROL::makePtr<vector>(dim, 0.0);
64
65 // Vector of natural numbers.
66 ROL::Ptr<vector> k_ptr = ROL::makePtr<vector>(dim, 0.0);
67
68 // For gradient and Hessian checks.
69 ROL::Ptr<vector> xtest_ptr = ROL::makePtr<vector>(dim, 0.0);
70 ROL::Ptr<vector> d_ptr = ROL::makePtr<vector>(dim, 0.0);
71 ROL::Ptr<vector> v_ptr = ROL::makePtr<vector>(dim, 0.0);
72 ROL::Ptr<vector> hv_ptr = ROL::makePtr<vector>(dim, 0.0);
73 ROL::Ptr<vector> ihhv_ptr = ROL::makePtr<vector>(dim, 0.0);
74
75
76 RealT left = -1e0, right = 1e0;
77 for (int i=0; i<dim; i++) {
78 (*x_ptr)[i] = 2;
79 (*k_ptr)[i] = i+1.0;
80 }
81
82 ROL::Ptr<V> k = ROL::makePtr<SV>(k_ptr);
83 SV x(x_ptr);
84
85 // Check gradient and Hessian.
86 SV xtest(xtest_ptr);
87 SV d(d_ptr);
88 SV v(v_ptr);
89 SV hv(hv_ptr);
90 SV ihhv(ihhv_ptr);
91
92 ROL::RandomizeVector( xtest, left, right );
93 ROL::RandomizeVector( d, left, right );
94 ROL::RandomizeVector( v, left, right );
95
97
98 obj.checkGradient(xtest, d, true, *outStream); *outStream << "\n";
99 obj.checkHessVec(xtest, v, true, *outStream); *outStream << "\n";
100 obj.checkHessSym(xtest, d, v, true, *outStream); *outStream << "\n";
101
102 // Check inverse Hessian.
103 RealT tol=0;
104 obj.hessVec(hv,v,xtest,tol);
105 obj.invHessVec(ihhv,hv,xtest,tol);
106 ihhv.axpy(-1,v);
107 *outStream << "Checking inverse Hessian" << std::endl;
108 *outStream << "||H^{-1}Hv-v|| = " << ihhv.norm() << std::endl;
109
110
111 // Run algorithm.
112 algo.run(x, obj, true, *outStream);
113
114 // Get True Solution
115 ROL::Ptr<vector> xtrue_ptr = ROL::makePtr<vector>(dim, 0.0);
116 SV xtrue(xtrue_ptr);
117
118
119 // Compute Error
120 x.axpy(-1.0, xtrue);
121 RealT abserr = x.norm();
122 *outStream << std::scientific << "\n Absolute Error: " << abserr << std::endl;
123 if ( abserr > sqrt(ROL::ROL_EPSILON<RealT>()) ) {
124 errorFlag += 1;
125 }
126 }
127 catch (std::logic_error& err) {
128 *outStream << err.what() << "\n";
129 errorFlag = -1000;
130 }; // end try
131
132 if (errorFlag != 0)
133 std::cout << "End Result: TEST FAILED\n";
134 else
135 std::cout << "End Result: TEST PASSED\n";
136
137 return 0;
138
139}
140
Vector< Real > V
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
Contains definitions for the Zakharov function as evaluated using only the ROL::Vector interface.
Provides an interface to run optimization algorithms.
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
virtual std::vector< Real > checkHessSym(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
Hessian symmetry check.
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Defines the linear algebra or vector space interface.
void invHessVec(Vector< Real > &ihv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply inverse Hessian approximation to vector.
void RandomizeVector(Vector< Real > &x, const Real &lower=0.0, const Real &upper=1.0)
Fill a ROL::Vector with uniformly-distributed random numbers in the interval [lower,...
constexpr auto dim
int main(int argc, char *argv[])
double RealT