ROL
test_11.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10/* \file test_11.hpp
11 \brief Verify that the Coleman-Li Model function produces the
12 correct values for a test problem
13
14 \f[ \min_x f(x) = \frac{1}{2}(x_1^2+2x_2^2),\quad x_1 \geq 1,\; x_2 <= -1 \f]
15
16 The gradient is
17 \f[ \nabla f(x) = (x_1,2 x_2 ) \f]
18
19 and the Hessian is
20 \[f \nabla^2 f(x) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \f]
21
22 The minimizer is \f$ x^\ast = (1,-1)\f$
23
24 For feasible \f$x\f$, the Coleman-Li quantities of interest are
25
26 \f[ v_1 = x_1 - 1,\quad v_2 = -1 - x_2 \f]
27 \f[ D^{-1} = \begin{pmatrix} \sqrt{|x_1-1|} & 0 \\ 0 & \sqrt{|x_2+1|} \end{pmatrix} \f]
28 \f[ J=\begin{pmatrix} 1 & -1 \end{pmatrix} \f]
29 \f[ \hat M_k = \begin{pmatrix} |x_1-1|^2+|x_1| & 0 \\
30 0 & |x_2+1|^2+2|x_2| \end{pmatrix} \f]
31
32
33*/
34
35#include "ROL_Objective.hpp"
36#include "ROL_StdVector.hpp"
37
38template<class Real>
39class CLTestObjective : public ROL::Objective<Real> {
40
41
42public:
43
44 Real value( const ROL::Vector<Real> &x, Real &tol ) {
45 ROL::Ptr<const std::vector<Real> > xp =
46 dynamic_cast<const ROL::StdVector<Real>&>(x).getVector();
47 return 0.5*((*xp)[0]*(*xp)[0] + 2*(*xp)[1]*(*xp)[1]);
48 }
49
50 void gradient( ROL::Vector<Real> &g, const ROL::Vector<Real> &x, Real &tol ) {
51 ROL::Ptr<std::vector<Real> > gp =
52 dynamic_cast<ROL::StdVector<Real>&>(g).getVector();
53 ROL::Ptr<const std::vector<Real> > xp =
54 dynamic_cast<const ROL::StdVector<Real>&>(x).getVector();
55 (*gp)[0] = (*xp)[0];
56 (*gp)[1] = 2*(*xp)[1];
57 }
58
60 const ROL::Vector<Real> &v,
61 const ROL::Vector<Real> &x,
62 Real &tol ) {
63 ROL::Ptr<std::vector<Real> > hvp =
64 dynamic_cast<ROL::StdVector<Real>&>(hv).getVector();
65 ROL::Ptr<const std::vector<Real> > vp =
66 dynamic_cast<const ROL::StdVector<Real>&>(v).getVector();
67 (*hvp)[0] = (*vp)[0];
68 (*hvp)[1] = 2*(*vp)[1];
69 }
70
71}; // CLTestObjective
72
73template<class Real>
74class CLExactModel : public ROL::Objective<Real> {
75
76ROL::Ptr<std::vector<Real> > x_;
77const ROL::Ptr<const std::vector<Real> > l_;
78const ROL::Ptr<const std::vector<Real> > u_;
79ROL::Ptr<std::vector<Real> > g_;
80ROL::Ptr<std::vector<Real> > di_;
81ROL::Ptr<std::vector<Real> > j_;
82ROL::Ptr<ROL::Objective<Real> > obj_;
83
84public:
85
86 CLExactModel( ROL::Ptr<std::vector<Real> > &xp,
87 const ROL::Ptr<const std::vector<Real> > &lp,
88 const ROL::Ptr<const std::vector<Real> > &up ) :
89 x_(xp), l_(lp), u_(up) {
90 g_ = ROL::makePtr<std::vector<double>(x_->size>());
91 di_ = ROL::makePtr<std::vector<double>(x_->size>());
92 j_ = ROL::makePtr<std::vector<double>(x_->size>());
93
94
95 obj_ = ROL::makePtr<CLTestObjective<Real>>();
96
99 Real tol = std::sqrt(ROL::ROL_EPSILON<Real>());
100 obj_->gradient(g,x,tol);
101
102 std::vector<Real> v(2);
103
104 for(int i=0; i<2;++i) {
105 (*j_)[i] = 0;
106 // Case (i)
107 if( (*g_)[i]<0 && (*u_)[i] < ROL::ROL_INF<Real>() ) {
108 v[i] = (*u_)[i]-(*x_)[i];
109 (*j_)[i] = -1;
110 }
111 // Case (ii)
112 else if( (*g_)[i]>=0 && (*l_)[i] > ROL::ROL_NINF<Real>() ) {
113 v[i] = (*x_)[i] - (*l_)[i];
114 (*j_)[i] = 1;
115 }
116 // Case (iii)
117 else if( (*g_)[i]<=0 && (*u_)[i] == ROL::ROL_INF<Real>() ) {
118 v[i] = -1;
119 }
120 // Case (iv)
121 else {
122 v[i] = 1;
123 }
124 (*di_)[i] = std::sqrt(std::abs(v[i]));
125 }
126
127
128 std::cout << "x[0] = " << (*x_)[0] << std::endl;
129 std::cout << "x[1] = " << (*x_)[1] << std::endl;
130 std::cout << "g[0] = " << (*g_)[0] << std::endl;
131 std::cout << "g[0] = " << (*g_)[1] << std::endl;
132 std::cout << "di[0] = " << (*di_)[0] << std::endl;
133 std::cout << "di[1] = " << (*di_)[1] << std::endl;
134
135 }
136
137 void update( const ROL::Vector<Real> &x, bool flag = true, int iter=-1 ) {
138 ROL::Ptr<const std::vector<Real> > xc =
139 dynamic_cast<const ROL::StdVector<Real>&>(x).getVector();
140 (*x_)[0] = (*xc)[0];
141 (*x_)[1] = (*xc)[1];
142
143 std::vector<Real> v(2);
145 Real tol = std::sqrt(ROL::ROL_EPSILON<Real>());
146 obj_->gradient(g,x,tol);
147
148 for(int i=0; i<2;++i) {
149 (*j_)[i] = 0;
150 // Case (i)
151 if( (*g_)[i]<0 && (*u_)[i] < ROL::ROL_INF<Real>() ) {
152 v[i] = (*u_)[i]-(*x_)[i];
153 (*j_)[i] = -1;
154 }
155 // Case (ii)
156 else if( (*g_)[i]>=0 && (*l_)[i] > ROL::ROL_NINF<Real>() ) {
157 v[i] = (*x_)[i] - (*l_)[i];
158 (*j_)[i] = 1;
159 }
160 // Case (iii)
161 else if( (*g_)[i]<=0 && (*u_)[i] == ROL::ROL_INF<Real>() ) {
162 v[i] = -1;
163 }
164 // Case (iv)
165 else {
166 v[i] = 1;
167 }
168 (*di_)[i] = std::sqrt(std::abs(v[i]));
169 }
170
171 std::cout << "x[0] = " << (*x_)[0] << std::endl;
172 std::cout << "x[1] = " << (*x_)[1] << std::endl;
173 std::cout << "g[0] = " << (*g_)[0] << std::endl;
174 std::cout << "g[0] = " << (*g_)[1] << std::endl;
175 std::cout << "di[0] = " << (*di_)[0] << std::endl;
176 std::cout << "di[1] = " << (*di_)[1] << std::endl;
177 }
178
179 Real value( const ROL::Vector<Real> &s, Real &tol ) {
180 ROL::Ptr<const std::vector<Real> > sp =
181 dynamic_cast<const ROL::StdVector<Real>&>(s).getVector();
182
183 ROL::Ptr<ROL::Vector<Real> > y = s.clone();
184 hessVec(*y,s,s,tol);
185 Real result = 0.5*y->dot(s);
186 result += (*di_)[0]*(*g_)[0]*(*sp)[0];
187 result += (*di_)[1]*(*g_)[1]*(*sp)[1];
188 return result;
189 }
190
191 void gradient( ROL::Vector<Real> &g, const ROL::Vector<Real> &s, Real &tol ) {
192 ROL::Ptr<std::vector<Real> > gp =
193 dynamic_cast<ROL::StdVector<Real>&>(g).getVector();
194 hessVec(g,s,s,tol);
195
196 (*gp)[0] += (*di_)[0]*(*g_)[0];
197 (*gp)[1] += (*di_)[1]*(*g_)[1];
198 }
199
201 const ROL::Vector<Real> &v,
202 const ROL::Vector<Real> &s,
203 Real &tol ) {
204
205 ROL::Ptr<std::vector<Real> > hvp =
206 dynamic_cast<ROL::StdVector<Real>&>(hv).getVector();
207 ROL::Ptr<const std::vector<Real> > vp =
208 dynamic_cast<const ROL::StdVector<Real>&>(v).getVector();
209
210 obj_->hessVec(hv,v,s,tol);
211
212 for(int i=0; i<2; ++i) {
213 (*hvp)[i] *= (*di_)[i]*(*di_)[i];
214 (*hvp)[i] += (*g_)[i]*(*j_)[i]*(*vp)[i];
215 }
216
217 }
218
219
220}; // CLExactModel
221
222
223
224
ROL::Ptr< std::vector< Real > > j_
Definition test_11.hpp:81
ROL::Ptr< ROL::Objective< Real > > obj_
Definition test_11.hpp:82
void update(const ROL::Vector< Real > &x, bool flag=true, int iter=-1)
Update objective function.
Definition test_11.hpp:137
void gradient(ROL::Vector< Real > &g, const ROL::Vector< Real > &s, Real &tol)
Compute gradient.
Definition test_11.hpp:191
const ROL::Ptr< const std::vector< Real > > l_
Definition test_11.hpp:77
ROL::Ptr< std::vector< Real > > x_
Definition test_11.hpp:76
ROL::Ptr< std::vector< Real > > di_
Definition test_11.hpp:80
ROL::Ptr< std::vector< Real > > g_
Definition test_11.hpp:79
const ROL::Ptr< const std::vector< Real > > u_
Definition test_11.hpp:78
void hessVec(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &s, Real &tol)
Apply Hessian approximation to vector.
Definition test_11.hpp:200
Real value(const ROL::Vector< Real > &s, Real &tol)
Compute value.
Definition test_11.hpp:179
CLExactModel(ROL::Ptr< std::vector< Real > > &xp, const ROL::Ptr< const std::vector< Real > > &lp, const ROL::Ptr< const std::vector< Real > > &up)
Definition test_11.hpp:86
void gradient(ROL::Vector< Real > &g, const ROL::Vector< Real > &x, Real &tol)
Compute gradient.
Definition test_11.hpp:50
void hessVec(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
Definition test_11.hpp:59
Real value(const ROL::Vector< Real > &x, Real &tol)
Compute value.
Definition test_11.hpp:44
Provides the interface to evaluate objective functions.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Defines the linear algebra or vector space interface.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.