ROL
step/krylov/test_01.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
14#include "ROL_StdVector.hpp"
15#include "ROL_GMRES.hpp"
16#include "ROL_KrylovFactory.hpp"
17#include "ROL_RandomVector.hpp"
18#include "ROL_ParameterList.hpp"
19
20#include "ROL_Stream.hpp"
21#include "Teuchos_GlobalMPISession.hpp"
22
23#include<iomanip>
24
25// Identity operator for preconditioner
26template<class Real>
27class Identity : public ROL::LinearOperator<Real> {
29public:
30 void apply( V& Hv, const V& v, Real &tol ) const {
31 Hv.set(v);
32 }
33}; // class Identity
34
35
36// Apply a tridiagonal Toeplitz matrix to a ROL::StdVector to test Krylov solvers
37template<class Real>
39
40 typedef std::vector<Real> vector;
43
44 typedef typename vector::size_type uint;
45
46private:
47
48 Real a_; // subdiagonal
49 Real b_; // diagonal
50 Real c_; // superdiagonal
51
52 ROL::LAPACK<int,Real> lapack_;
53
54public:
55
56 TridiagonalToeplitzOperator( Real &a, Real &b, Real &c ) : a_(a), b_(b), c_(c) {}
57
58 // Tridiagonal multiplication
59 void apply( V &Hv, const V &v, Real &tol ) const {
60
61
62
63 SV &Hvs = dynamic_cast<SV&>(Hv);
64 ROL::Ptr<vector> Hvp = Hvs.getVector();
65
66 const SV &vs = dynamic_cast<const SV&>(v);
67 ROL::Ptr<const vector> vp = vs.getVector();
68
69 uint n = vp->size();
70
71 (*Hvp)[0] = b_*(*vp)[0] + c_*(*vp)[1];
72
73 for(uint k=1; k<n-1; ++k) {
74 (*Hvp)[k] = a_*(*vp)[k-1] + b_*(*vp)[k] + c_*(*vp)[k+1];
75 }
76
77 (*Hvp)[n-1] = a_*(*vp)[n-2] + b_*(*vp)[n-1];
78
79 }
80
81 // Tridiagonal solve - compare against GMRES
82 void applyInverse( V &Hv, const V &v, Real &tol ) const {
83
84
85
86 SV &Hvs = dynamic_cast<SV&>(Hv);
87 ROL::Ptr<vector> Hvp = Hvs.getVector();
88
89 const SV &vs = dynamic_cast<const SV&>(v);
90 ROL::Ptr<const vector> vp = vs.getVector();
91
92 uint n = vp->size();
93
94 const char TRANS = 'N';
95 const int NRHS = 1;
96
97 vector dl(n-1,a_);
98 vector d(n,b_);
99 vector du(n-1,c_);
100 vector du2(n-2,0.0);
101
102 std::vector<int> ipiv(n);
103 int info;
104
105 Hv.set(v); // LAPACK will modify this in place
106
107 // Do Tridiagonal LU factorization
108 lapack_.GTTRF(n,&dl[0],&d[0],&du[0],&du2[0],&ipiv[0],&info);
109
110 // Solve the system with the LU factors
111 lapack_.GTTRS(TRANS,n,NRHS,&dl[0],&d[0],&du[0],&du2[0],&ipiv[0],&(*Hvp)[0],n,&info);
112
113 }
114
115}; // class TridiagonalToeplitzOperator
116
117
118
119typedef double RealT;
120
121int main(int argc, char *argv[]) {
122
123
124
125
126 typedef std::vector<RealT> vector;
127 typedef ROL::StdVector<RealT> SV;
128
129 typedef typename vector::size_type luint;
130
131 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
132
133 int iprint = argc - 1;
134 ROL::Ptr<std::ostream> outStream;
135 ROL::nullstream bhs; // outputs nothing
136 if (iprint > 0)
137 outStream = ROL::makePtrFromRef(std::cout);
138 else
139 outStream = ROL::makePtrFromRef(bhs);
140
141 int errorFlag = 0;
142
143 try {
144
145 ROL::ParameterList parlist;
146 ROL::ParameterList &gList = parlist.sublist("General");
147 ROL::ParameterList &kList = gList.sublist("Krylov");
148
149 kList.set("Type","GMRES");
150 kList.set("Iteration Limit",20);
151 kList.set("Absolute Tolerance",1.e-8);
152 kList.set("Relative Tolerance",1.e-6);
153 kList.set("Use Initial Guess",false);
154
155 luint dim = 10;
156
157 ROL::Ptr<vector> xp = ROL::makePtr<vector>(dim,0.0);
158 ROL::Ptr<vector> yp = ROL::makePtr<vector>(dim,0.0);
159 ROL::Ptr<vector> zp = ROL::makePtr<vector>(dim,0.0);
160 ROL::Ptr<vector> bp = ROL::makePtr<vector>(dim,0.0);
161
162 SV x(xp); // Exact solution
163 SV y(yp); // Solution using direct solve
164 SV z(zp); // Solution using GMRES
165
166 SV b(bp); // Right-hand-side
167
168 RealT left = -1.0;
169 RealT right = 1.0;
170
171 ROL::RandomizeVector(x,left,right);
172
173 RealT sub = -1.0;
174 RealT diag = 2.0;
175 RealT super = -1.0;
176
177 TridiagonalToeplitzOperator<RealT> T(sub,diag,super);
179
180 RealT tol = 0.0;
181
182 T.apply(b,x,tol);
183
184 T.applyInverse(y,b,tol);
185
186 ROL::Ptr<ROL::Krylov<RealT> > krylov = ROL::KrylovFactory<RealT>( parlist );
187
188 int iter;
189 int flag;
190
191 krylov->run(z,T,b,I,iter,flag);
192
193 *outStream << std::setw(10) << "Exact"
194 << std::setw(10) << "LAPACK"
195 << std::setw(10) << "GMRES " << std::endl;
196 *outStream << "---------------------------------" << std::endl;
197
198 for(luint k=0;k<dim;++k) {
199 *outStream << std::setw(10) << (*xp)[k] << " "
200 << std::setw(10) << (*yp)[k] << " "
201 << std::setw(10) << (*zp)[k] << " " << std::endl;
202 }
203
204 *outStream << "GMRES performed " << iter << " iterations." << std::endl;
205
206 z.axpy(-1.0,x);
207
208 if( z.norm() > std::sqrt(ROL::ROL_EPSILON<RealT>()) ) {
209 ++errorFlag;
210 }
211
212 }
213 catch (std::logic_error& err) {
214 *outStream << err.what() << "\n";
215 errorFlag = -1000;
216 }; // end try
217
218 if (errorFlag != 0)
219 std::cout << "End Result: TEST FAILED\n";
220 else
221 std::cout << "End Result: TEST PASSED\n";
222
223 return 0;
224}
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
ROL::Vector< Real > V
void apply(V &Hv, const V &v, Real &tol) const
Apply linear operator.
Provides the interface to apply a linear operator.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Ptr< const std::vector< Element > > getVector() const
Defines the linear algebra or vector space interface.
virtual void set(const Vector &x)
Set where .
void apply(V &Hv, const V &v, Real &tol) const
Apply linear operator.
TridiagonalToeplitzOperator(Real &a, Real &b, Real &c)
void applyInverse(V &Hv, const V &v, Real &tol) const
Apply inverse of linear operator.
ROL::LAPACK< int, Real > lapack_
void RandomizeVector(Vector< Real > &x, const Real &lower=0.0, const Real &upper=1.0)
Fill a ROL::Vector with uniformly-distributed random numbers in the interval [lower,...
int main(int argc, char *argv[])
double RealT
constexpr auto dim