ROL
gross-pitaevskii/example_02.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
48#include<algorithm>
49#include<string>
50#include"example_02.hpp"
52#include "ROL_CompositeStep.hpp"
53
54typedef double RealT;
55
56int main(int argc, char **argv) {
57
58
59 // Set up MPI
60 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
61
62 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
63 int iprint = argc - 1;
64 ROL::Ptr<std::ostream> outStream;
65 ROL::nullstream bhs; // outputs nothing
66 if (iprint > 0)
67 outStream = ROL::makePtrFromRef(std::cout);
68 else
69 outStream = ROL::makePtrFromRef(bhs);
70
71 int errorFlag = 0;
72
73
74 ROL::ParameterList parlist;
75 std::string paramfile = "parameters.xml";
76 auto gplist = ROL::getParametersFromXmlFile( paramfile );
77
78 int nx = gplist->get("Interior Grid Points",100);
79 RealT gnl = gplist->get("Nonlinearity Coefficient g",50.0);
80 bool exactsolve = gplist->get("Solve Exact Augmented System",false);
81
82 // Command line option to override parameters.xml for solving the exact augmented system
83 if(argc > 1) {
84 std::string input = argv[1];
85 std::transform(input.begin(), input.end(), input.begin(), ::tolower);
86 if(input=="exactsolve") {
87 exactsolve = true;
88 }
89 }
90
91
92 // Grid spacing
93 RealT dx = 1.0/(nx+1);
94
95 // Finite difference class
96 ROL::Ptr<FiniteDifference<RealT> > fd = ROL::makePtr<FiniteDifference<RealT>>(nx,dx);
97
98 // Pointer to linspace type vector \f$x_i = \frac{i+1}{n_x+1}\f$ where \f$i=0,\hdots,n_x\f$
99 ROL::Ptr<std::vector<RealT> > xi_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
100
101 for(int i=0; i<nx; ++i) {
102 (*xi_ptr)[i] = RealT(i+1)/(nx+1);
103 }
104
105 // Pointer to potential vector (quadratic centered at x=0.5)
106 ROL::Ptr<std::vector<RealT> > V_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
107 for(int i=0; i<nx; ++i) {
108 (*V_ptr)[i] = 100.0*pow((*xi_ptr)[i]-0.5,2);
109 }
110
111 StdVector<RealT> V(V_ptr);
112
113 // Iteration Vector (pointer to optimzation vector)
114 ROL::Ptr<std::vector<RealT> > psi_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
115 OptStdVector<RealT> psi(psi_ptr,fd);
116
117 // Set Initial Guess (normalized)
118 RealT sqrt30 = sqrt(30);
119
120 for (int i=0; i<nx; i++) {
121 (*psi_ptr)[i] = sqrt30*(*xi_ptr)[i]*(1.0-(*xi_ptr)[i]);
122 }
123
124
125 // Constraint value (scalar)
126 ROL::Ptr<std::vector<RealT> > c_ptr = ROL::makePtr<std::vector<RealT>>(1, 0.0);
127 ConStdVector<RealT> c(c_ptr);
128
129 // Lagrange multiplier value (scalar)
130 ROL::Ptr<std::vector<RealT> > lam_ptr = ROL::makePtr<std::vector<RealT>>(1, 0.0);
131 ConDualStdVector<RealT> lam(lam_ptr);
132
133 // Gradient
134 ROL::Ptr<std::vector<RealT> > g_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
135 OptDualStdVector<RealT> g(g_ptr,fd);
136
137 // Instantiate objective function
139
140 // Instantiate normalization constraint
142 ConStdVector<RealT>,ConDualStdVector<RealT> > constr(nx,dx,fd,exactsolve);
143
144
145 // Define algorithm.
146 std::string stepname = "Composite Step";
147 parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Nominal Relative Tolerance",1e-4);
148 parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Fix Tolerance",true);
149 parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Iteration Limit",20);
150 parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Relative Tolerance",1e-2);
151 parlist.sublist("Step").sublist(stepname).set("Output Level",0);
152 parlist.sublist("Status Test").set("Gradient Tolerance",1.e-12);
153 parlist.sublist("Status Test").set("Constraint Tolerance",1.e-12);
154 parlist.sublist("Status Test").set("Step Tolerance",1.e-14);
155 parlist.sublist("Status Test").set("Iteration Limit",100);
156 ROL::Ptr<ROL::StatusTest<RealT>>
157 status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(parlist);
158 ROL::Ptr<ROL::Step<RealT>>
159 step = ROL::makePtr<ROL::CompositeStep<RealT>>(parlist);
160 ROL::Algorithm<RealT> algo(step,status,false);
161
162 // Run algorithm.
163 algo.run(psi, g, lam, c, obj, constr, true, *outStream);
164
165 if(algo.getState()->gnorm>1e-6) {
166 errorFlag += 1;
167 }
168
169 if (errorFlag != 0)
170 std::cout << "End Result: TEST FAILED\n";
171 else
172 std::cout << "End Result: TEST PASSED\n";
173
174 return 0;
175}
Vector< Real > V
Provides an interface to run optimization algorithms.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Defines the linear algebra or vector space interface.
int main(int argc, char **argv)