ROL
function/test_09.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
15#include "ROL_HS39.hpp"
16
17#include "ROL_RandomVector.hpp"
19#include "ROL_StdVector.hpp"
20#include "ROL_Algorithm.hpp"
22#include "ROL_CompositeStep.hpp"
23#include "ROL_Stream.hpp"
24#include "Teuchos_GlobalMPISession.hpp"
25
26#include <iostream>
27
28typedef double RealT;
29
30
31int main(int argc, char *argv[]) {
32
33 typedef std::vector<RealT> vector;
34 typedef ROL::Vector<RealT> V;
35 typedef ROL::StdVector<RealT> SV;
36 typedef ROL::Objective<RealT> OBJ;
37 typedef ROL::Constraint<RealT> EC;
38
39 typedef typename vector::size_type luint;
40
41 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
42
43 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
44 int iprint = argc - 1;
45 ROL::Ptr<std::ostream> outStream;
46 ROL::nullstream bhs; // outputs nothing
47 if (iprint > 0)
48 outStream = ROL::makePtrFromRef(std::cout);
49 else
50 outStream = ROL::makePtrFromRef(bhs);
51
52 int errorFlag = 0;
53
54 // *** Example body.
55
56 try {
57
58 luint xdim = 4;
59 luint cdim = 1;
60
61 ROL::Ptr<vector> x_exact_ptr = ROL::makePtr<vector>(xdim);
62 (*x_exact_ptr)[0] = 1.0;
63 (*x_exact_ptr)[1] = 1.0;
64
65 ROL::Ptr<V> x = ROL::makePtr<SV>( ROL::makePtr<vector>(xdim, 0.0) );
66 ROL::Ptr<V> d = ROL::makePtr<SV>( ROL::makePtr<vector>(xdim, 0.0) );
67 ROL::Ptr<V> xtest = ROL::makePtr<SV>( ROL::makePtr<vector>(xdim, 0.0) );
68
69 ROL::Ptr<V> c1 = ROL::makePtr<SV>( ROL::makePtr<vector>(cdim, 1.0) );
70 ROL::Ptr<V> c2 = ROL::makePtr<SV>( ROL::makePtr<vector>(cdim, 1.0) );
71 ROL::Ptr<V> l1 = ROL::makePtr<SV>( ROL::makePtr<vector>(cdim, 1.0) );
72 ROL::Ptr<V> l2 = ROL::makePtr<SV>( ROL::makePtr<vector>(cdim, 1.0) );
73
74 ROL::Ptr<V> c = ROL::CreatePartitionedVector( c1, c2 );
75 ROL::Ptr<V> l = ROL::CreatePartitionedVector( l1, l2 );
76
77
78
79 SV x_exact( x_exact_ptr );
80
81 // Initial guess from H&S 39
82 x->applyUnary(ROL::Elementwise::Fill<RealT>(2.0));
83
84 ROL::RandomizeVector(*d, -1.0, 1.0 );
85 ROL::RandomizeVector(*xtest, -1.0, 1.0 );
86
87 ROL::Ptr<OBJ> obj = ROL::makePtr<ROL::ZOO::Objective_HS39<RealT>>();
88 ROL::Ptr<EC> con1 = ROL::makePtr<ROL::ZOO::Constraint_HS39a<RealT>>();
89 ROL::Ptr<EC> con2 = ROL::makePtr<ROL::ZOO::Constraint_HS39b<RealT>>();
90 std::vector<ROL::Ptr<EC> > cvec(2); cvec[0] = con1; cvec[1] = con2;
91
92 ROL::Ptr<EC> con = ROL::makePtr<ROL::Constraint_Partitioned<RealT>>(cvec);
93
94 *outStream << "Checking objective" << std::endl;
95 obj->checkGradient(*x,*d,true,*outStream);
96
97 *outStream << "\nChecking first equality constraint" << std::endl;
98 con1->checkApplyJacobian( *xtest, *d, *c1 , true, *outStream );
99 con1->checkApplyAdjointJacobian( *xtest, *l1, *c1, *d, true, *outStream );
100 con1->checkApplyAdjointHessian( *xtest, *l1, *d, *xtest, true, *outStream );
101
102 *outStream << "\nChecking second equality constraint" << std::endl;
103 con2->checkApplyJacobian( *xtest, *d, *c2, true, *outStream );
104 con2->checkApplyAdjointJacobian( *xtest, *l2, *c2, *d, true, *outStream );
105 con2->checkApplyAdjointHessian( *xtest, *l2, *d, *xtest, true, *outStream );
106
107 *outStream << "\nChecking partitioned equality constraint" << std::endl;
108 con->checkApplyJacobian( *xtest, *d, *c, true, *outStream );
109 con->checkApplyAdjointJacobian( *xtest, *l, *c, *d, true, *outStream );
110 con->checkApplyAdjointHessian( *xtest, *l, *d, *xtest, true, *outStream );
111
112 // Define algorithm.
113 ROL::ParameterList parlist;
114 std::string stepname = "Composite Step";
115 parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Nominal Relative Tolerance",1.e-4);
116 parlist.sublist("Step").sublist(stepname).sublist("Optimality System Solver").set("Fix Tolerance",true);
117 parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Iteration Limit",20);
118 parlist.sublist("Step").sublist(stepname).sublist("Tangential Subproblem Solver").set("Relative Tolerance",1e-2);
119 parlist.sublist("Step").sublist(stepname).set("Output Level",0);
120 parlist.sublist("Status Test").set("Gradient Tolerance",1.e-12);
121 parlist.sublist("Status Test").set("Constraint Tolerance",1.e-12);
122 parlist.sublist("Status Test").set("Step Tolerance",1.e-18);
123 parlist.sublist("Status Test").set("Iteration Limit",100);
124 ROL::Ptr<ROL::StatusTest<RealT>>
125 status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(parlist);
126 ROL::Ptr<ROL::Step<RealT>>
127 step = ROL::makePtr<ROL::CompositeStep<RealT>>(parlist);
128 ROL::Algorithm<RealT> algo(step,status,false);
129
130 algo.run(*x,x->dual(),*l,*c,*obj,*con,true,*outStream);
131
132 x->axpy(-1.0,x_exact);
133
134 if( x->norm() > 1e-6 ) {
135 ++errorFlag;
136 }
137
138 }
139 catch (std::logic_error& err) {
140 *outStream << err.what() << "\n";
141 errorFlag = -1000;
142 }; // end try
143
144 if (errorFlag != 0)
145 std::cout << "End Result: TEST FAILED\n";
146 else
147 std::cout << "End Result: TEST PASSED\n";
148
149 return 0;
150
151}
152
Vector< Real > V
Contains definitions for W. Hock and K. Schittkowski 39th test function.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
Provides an interface to run optimization algorithms.
Defines the general constraint operator interface.
Provides the interface to evaluate objective functions.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Defines the linear algebra or vector space interface.
int main(int argc, char *argv[])
double RealT
void RandomizeVector(Vector< Real > &x, const Real &lower=0.0, const Real &upper=1.0)
Fill a ROL::Vector with uniformly-distributed random numbers in the interval [lower,...
ROL::Ptr< Vector< Real > > CreatePartitionedVector(const ROL::Ptr< Vector< Real > > &a)