ROL
example_05.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#include "example_05.hpp"
11
12typedef double RealT;
13
14template<class Real>
15Real random(const ROL::Ptr<const Teuchos::Comm<int> > &comm) {
16 Real val = 0.0;
17 if ( Teuchos::rank<int>(*comm)==0 ) {
18 val = (Real)rand()/(Real)RAND_MAX;
19 }
20 Teuchos::broadcast<int,Real>(*comm,0,1,&val);
21 return val;
22}
23
24int main(int argc, char* argv[]) {
25
26 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
27 ROL::Ptr<const Teuchos::Comm<int> > comm
28 = ROL::toPtr(Teuchos::DefaultComm<int>::getComm());
29
30 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
31 int iprint = argc - 1;
32 ROL::Ptr<std::ostream> outStream;
33 ROL::nullstream bhs; // outputs nothing
34 if (iprint > 0 && Teuchos::rank<int>(*comm)==0)
35 outStream = ROL::makePtrFromRef(std::cout);
36 else
37 outStream = ROL::makePtrFromRef(bhs);
38
39 int errorFlag = 0;
40
41 try {
42 /**********************************************************************************************/
43 /************************* CONSTRUCT ROL ALGORITHM ********************************************/
44 /**********************************************************************************************/
45 // Get ROL parameterlist
46 std::string filename = "input.xml";
47 auto parlist = ROL::getParametersFromXmlFile( filename );
48 // Build ROL algorithm
49 parlist->sublist("Status Test").set("Gradient Tolerance",1.e-7);
50 parlist->sublist("Status Test").set("Step Tolerance",1.e-14);
51 parlist->sublist("Status Test").set("Iteration Limit",100);
52 /**********************************************************************************************/
53 /************************* CONSTRUCT VECTORS **************************************************/
54 /**********************************************************************************************/
55 // Build control vectors
56 int nx = 256;
57 // Construct storage for optimal solution
58 ROL::Ptr<std::vector<RealT> > z_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
59 ROL::Ptr<ROL::Vector<RealT> > zp = ROL::makePtr<ROL::StdVector<RealT>>(z_ptr);
60 ROL::Ptr<std::vector<RealT> > x1_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
61 ROL::Ptr<ROL::Vector<RealT> > x1p = ROL::makePtr<ROL::StdVector<RealT>>(x1_ptr);
62 ROL::Ptr<std::vector<RealT> > x2_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
63 ROL::Ptr<ROL::Vector<RealT> > x2p = ROL::makePtr<ROL::StdVector<RealT>>(x2_ptr);
64 ROL::Ptr<std::vector<RealT> > x3_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
65 ROL::Ptr<ROL::Vector<RealT> > x3p = ROL::makePtr<ROL::StdVector<RealT>>(x3_ptr);
66 std::vector<ROL::Ptr<ROL::Vector<RealT> > > xvec = {x1p, x2p, x3p};
67 // Create vectors for derivative check
68 ROL::Ptr<std::vector<RealT> > xr_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
69 ROL::StdVector<RealT> xr(xr_ptr);
70 ROL::Ptr<std::vector<RealT> > d_ptr = ROL::makePtr<std::vector<RealT>>(nx+2,0);
71 ROL::StdVector<RealT> d(d_ptr);
72 for ( int i = 0; i < nx+2; i++ ) {
73 (*xr_ptr)[i] = random<RealT>(comm);
74 (*d_ptr)[i] = random<RealT>(comm);
75 }
76 // Build state and adjoint vectors
77 ROL::Ptr<std::vector<RealT> > u_ptr = ROL::makePtr<std::vector<RealT>>(nx,1);
78 ROL::Ptr<ROL::Vector<RealT> > up = ROL::makePtr<ROL::StdVector<RealT>>(u_ptr);
79 ROL::Ptr<std::vector<RealT> > p_ptr = ROL::makePtr<std::vector<RealT>>(nx,0);
80 ROL::Ptr<ROL::Vector<RealT> > pp = ROL::makePtr<ROL::StdVector<RealT>>(p_ptr);
81 /**********************************************************************************************/
82 /************************* CONSTRUCT SOL COMPONENTS *******************************************/
83 /**********************************************************************************************/
84 // Build samplers
85 int dim = 4, nSamp = 100;
86 std::vector<RealT> tmp = {-1, 1};
87 std::vector<std::vector<RealT> > bounds(dim,tmp);
88 ROL::Ptr<ROL::BatchManager<RealT> > bman
89 = ROL::makePtr<ROL::StdTeuchosBatchManager<RealT,int>>(comm);
90 ROL::Ptr<ROL::SampleGenerator<RealT> > sampler
91 = ROL::makePtr<ROL::MonteCarloGenerator<RealT>>(nSamp,bounds,bman,false,false,100);
92 /**********************************************************************************************/
93 /************************* CONSTRUCT OBJECTIVE FUNCTION ***************************************/
94 /**********************************************************************************************/
95 // Build risk-averse objective function
96 RealT alpha = 1.e-3;
97 ROL::Ptr<ROL::Objective_SimOpt<RealT> > pobjSimOpt
98 = ROL::makePtr<Objective_BurgersControl<RealT>>(alpha,nx);
99 ROL::Ptr<ROL::Constraint_SimOpt<RealT> > pconSimOpt
100 = ROL::makePtr<Constraint_BurgersControl<RealT>>(nx);
101 pconSimOpt->setSolveParameters(*parlist);
102 ROL::Ptr<ROL::Objective<RealT> > pObj
103 = ROL::makePtr<ROL::Reduced_Objective_SimOpt<RealT>>(pobjSimOpt,pconSimOpt,up,zp,pp);
104 // Test parametrized objective functions
105 *outStream << "Check Derivatives of Parametrized Objective Function\n";
106 xvec[0]->set(xr);
107 pObj->setParameter(sampler->getMyPoint(0));
108 pObj->checkGradient(*xvec[0],d,true,*outStream);
109 pObj->checkHessVec(*xvec[0],d,true,*outStream);
110 /**********************************************************************************************/
111 /************************* SMOOTHED CVAR 1.e-2, 1.e-4, 1.e-6 **********************************/
112 /**********************************************************************************************/
113 const RealT cl(0.9), cc(1), lb(-0.5), ub(0.5);
114 const std::string ra = "Risk Averse", rm = "CVaR", dist = "Parabolic";
115 const bool storage = true;
116 RealT eps(1.e-2);
117 std::vector<RealT> stat(3,0);
118 ROL::Ptr<ROL::OptimizationProblem<RealT>> optProb;
119 ROL::Ptr<ROL::OptimizationSolver<RealT>> solver;
120 for (int i = 0; i < 3; ++i) {
121 *outStream << "\nSOLVE SMOOTHED CONDITIONAL VALUE AT RISK WITH TRUST REGION\n";
122 // Build CVaR risk measure
123 ROL::ParameterList list;
124 list.sublist("SOL").set("Type",ra);
125 list.sublist("SOL").set("Store Sampled Value and Gradient",storage);
126 list.sublist("SOL").sublist("Risk Measure").set("Name",rm);
127 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Confidence Level",cl);
128 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Convex Combination Parameter",cc);
129 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Smoothing Parameter",eps);
130 list.sublist("SOL").sublist("Risk Measure").sublist(rm).sublist("Distribution").set("Name",dist);
131 list.sublist("SOL").sublist("Risk Measure").sublist(rm).sublist("Distribution").sublist(dist).set("Lower Bound",lb);
132 list.sublist("SOL").sublist("Risk Measure").sublist(rm).sublist("Distribution").sublist(dist).set("Upper Bound",ub);
133 // Build stochastic problem
134 if ( i==0 ) { xvec[i]->zero(); }
135 else { xvec[i]->set(*xvec[i-1]); }
136 optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,xvec[i]);
137 RealT init_stat(1);
138 if ( i > 0 ) { init_stat = stat[i-1]; }
139 list.sublist("SOL").set("Initial Statistic",init_stat);
140 optProb->setStochasticObjective(list,sampler);
141 optProb->check(*outStream);
142 // Run ROL algorithm
143 parlist->sublist("Step").set("Type","Trust Region");
144 solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
145 clock_t start = clock();
146 solver->solve(*outStream);
147 *outStream << "Optimization time: " << (RealT)(clock()-start)/(RealT)CLOCKS_PER_SEC << " seconds.\n";
148 // Get solution statistic
149 stat[i] = optProb->getSolutionStatistic();
150 // Update smoothing parameter
151 eps *= static_cast<RealT>(1.e-2);
152 }
153 /**********************************************************************************************/
154 /************************* NONSMOOTH PROBLEM **************************************************/
155 /**********************************************************************************************/
156 *outStream << "\nSOLVE NONSMOOTH CVAR PROBLEM WITH BUNDLE TRUST REGION\n";
157 ROL::ParameterList list;
158 list.sublist("SOL").set("Type",ra);
159 list.sublist("SOL").set("Store Sampled Value and Gradient",storage);
160 list.sublist("SOL").sublist("Risk Measure").set("Name",rm);
161 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Confidence Level",cl);
162 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Convex Combination Parameter",cc);
163 list.sublist("SOL").sublist("Risk Measure").sublist(rm).set("Smoothing Parameter",0.);
164 list.sublist("SOL").sublist("Risk Measure").sublist(rm).sublist("Distribution").set("Name","Dirac");
165 list.sublist("SOL").sublist("Risk Measure").sublist(rm).sublist("Distribution").sublist("Dirac").set("Location",0.);
166 // Build stochastic problem
167 zp->set(*xvec[2]);
168 optProb = ROL::makePtr<ROL::OptimizationProblem<RealT>>(pObj,zp);
169 list.sublist("SOL").set("Initial Statistic",stat[2]);
170 optProb->setStochasticObjective(list,sampler);
171 optProb->check(*outStream);
172 // Run ROL algorithm
173 parlist->sublist("Status Test").set("Iteration Limit",1000);
174 parlist->sublist("Step").sublist("Bundle").set("Epsilon Solution Tolerance",1.e-7);
175 parlist->sublist("Step").set("Type","Bundle");
176 solver = ROL::makePtr<ROL::OptimizationSolver<RealT>>(*optProb,*parlist);
177 clock_t start = clock();
178 solver->solve(*outStream);
179 *outStream << "Optimization time: " << (RealT)(clock()-start)/(RealT)CLOCKS_PER_SEC << " seconds.\n";
180 /**********************************************************************************************/
181 /************************* COMPUTE ERROR ******************************************************/
182 /**********************************************************************************************/
183 ROL::Ptr<ROL::Vector<RealT> > cErr = zp->clone();
184 RealT zstat = optProb->getSolutionStatistic();
185 *outStream << "\nSUMMARY:\n";
186 *outStream << " ---------------------------------------------\n";
187 *outStream << " True Value-At-Risk = " << zstat << "\n";
188 *outStream << " ---------------------------------------------\n";
189 RealT VARerror = std::abs(zstat-stat[0]);
190 cErr->set(*xvec[0]); cErr->axpy(-1.0,*zp);
191 RealT CTRLerror = cErr->norm();
192 RealT TOTerror1 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
193 *outStream << " Value-At-Risk (1.e-2) = " << stat[0] << "\n";
194 *outStream << " Value-At-Risk Error = " << VARerror << "\n";
195 *outStream << " Control Error = " << CTRLerror << "\n";
196 *outStream << " Total Error = " << TOTerror1 << "\n";
197 *outStream << " ---------------------------------------------\n";
198 VARerror = std::abs(zstat-stat[1]);
199 cErr->set(*xvec[1]); cErr->axpy(-1.0,*zp);
200 CTRLerror = cErr->norm();
201 RealT TOTerror2 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
202 *outStream << " Value-At-Risk (1.e-4) = " << stat[1] << "\n";
203 *outStream << " Value-At-Risk Error = " << VARerror << "\n";
204 *outStream << " Control Error = " << CTRLerror << "\n";
205 *outStream << " Total Error = " << TOTerror2 << "\n";
206 *outStream << " ---------------------------------------------\n";
207 VARerror = std::abs(zstat-stat[2]);
208 cErr->set(*xvec[2]); cErr->axpy(-1.0,*zp);
209 CTRLerror = cErr->norm();
210 RealT TOTerror3 = std::sqrt(std::pow(VARerror,2)+std::pow(CTRLerror,2));
211 *outStream << " Value-At-Risk (1.e-6) = " << stat[2] << "\n";
212 *outStream << " Value-At-Risk Error = " << VARerror << "\n";
213 *outStream << " Control Error = " << CTRLerror << "\n";
214 *outStream << " Total Error = " << TOTerror3 << "\n";
215 *outStream << " ---------------------------------------------\n\n";
216 // Comparison
217 errorFlag += ((TOTerror1 < 90.*TOTerror2) && (TOTerror2 < 90.*TOTerror3)) ? 1 : 0;
218
219 // Output controls
220 std::ofstream control;
221 control.open("example04_control.txt");
222 for (int n = 0; n < nx+2; n++) {
223 control << std::scientific << std::setprecision(15)
224 << std::setw(25) << static_cast<RealT>(n)/static_cast<RealT>(nx+1)
225 << std::setw(25) << (*z_ptr)[n]
226 << std::endl;
227 }
228 control.close();
229
230 }
231 catch (std::logic_error& err) {
232 *outStream << err.what() << "\n";
233 errorFlag = -1000;
234 }; // end try
235
236 if (errorFlag != 0)
237 std::cout << "End Result: TEST FAILED\n";
238 else
239 std::cout << "End Result: TEST PASSED\n";
240
241 return 0;
242}
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
int main(int argc, char *argv[])
Real random(const ROL::Ptr< const Teuchos::Comm< int > > &comm)
double RealT
constexpr auto dim