ROL
example_04.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
15#include "ROL_Algorithm.hpp"
18#include "ROL_Vector_SimOpt.hpp"
19#include "ROL_ParameterList.hpp"
20
21#include "ROL_Stream.hpp"
22#include "Teuchos_GlobalMPISession.hpp"
23
24#include <iostream>
25#include <algorithm>
26
27#include "example_04.hpp"
28
29typedef double RealT;
36
37int main(int argc, char *argv[]) {
38
39 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
40 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
41 int iprint = argc - 1;
42 ROL::Ptr<std::ostream> outStream;
43 ROL::nullstream bhs; // outputs nothing
44 if (iprint > 0)
45 outStream = ROL::makePtrFromRef(std::cout);
46 else
47 outStream = ROL::makePtrFromRef(bhs);
48
49 int errorFlag = 0;
50
51 // *** Example body.
52 try {
53 /*************************************************************************/
54 /************* INITIALIZE BURGERS FEM CLASS ******************************/
55 /*************************************************************************/
56 int nx = 128; // Set spatial discretization.
57 RealT alpha = 1.e-3; // Set penalty parameter.
58 RealT nu = 1e-2; // Viscosity parameter.
59 RealT nl = 1.0; // Nonlinearity parameter (1 = Burgers, 0 = linear).
60 RealT u0 = 1.0; // Dirichlet boundary condition at x=0.
61 RealT u1 = 0.0; // Dirichlet boundary condition at x=1.
62 RealT f = 0.0; // Constant volumetric force.
63 RealT cH1 = 1.0; // Scale for derivative term in H1 norm.
64 RealT cL2 = 0.0; // Scale for mass term in H1 norm.
65 ROL::Ptr<BurgersFEM<RealT> > fem
66 = ROL::makePtr<BurgersFEM<RealT>>(nx,nu,nl,u0,u1,f,cH1,cL2);
67 fem->test_inverse_mass(*outStream);
68 fem->test_inverse_H1(*outStream);
69 /*************************************************************************/
70 /************* INITIALIZE SIMOPT OBJECTIVE FUNCTION **********************/
71 /*************************************************************************/
72 ROL::Ptr<std::vector<RealT> > ud_ptr
73 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
74 ROL::Ptr<ROL::Vector<RealT> > ud
75 = ROL::makePtr<L2VectorPrimal<RealT>>(ud_ptr,fem);
76 Objective_BurgersControl<RealT> obj(fem,ud,alpha);
77 /*************************************************************************/
78 /************* INITIALIZE SIMOPT EQUALITY CONSTRAINT *********************/
79 /*************************************************************************/
80 bool useEChessian = true;
81 Constraint_BurgersControl<RealT> con(fem, useEChessian);
82 /*************************************************************************/
83 /************* INITIALIZE BOUND CONSTRAINTS ******************************/
84 /*************************************************************************/
85 // INITIALIZE STATE CONSTRAINTS
86 std::vector<RealT> Ulo(nx, 0.), Uhi(nx, 1.);
87 //std::vector<RealT> Ulo(nx, -1.e8), Uhi(nx, 1.e8);
88 ROL::Ptr<ROL::BoundConstraint<RealT> > Ubnd
89 = ROL::makePtr<H1BoundConstraint<RealT>>(Ulo,Uhi,fem);
90 //Ubnd->deactivate();
91 // INITIALIZE CONTROL CONSTRAINTS
92 //std::vector<RealT> Zlo(nx+2, -1.e8), Zhi(nx+2, 1.e8);
93 std::vector<RealT> Zlo(nx+2,0.), Zhi(nx+2,2.);
94 ROL::Ptr<ROL::BoundConstraint<RealT> > Zbnd
95 = ROL::makePtr<L2BoundConstraint<RealT>>(Zlo,Zhi,fem);
96 //Zbnd->deactivate();
97 // INITIALIZE SIMOPT BOUND CONSTRAINTS
99 bnd.deactivate();
100 /*************************************************************************/
101 /************* INITIALIZE VECTOR STORAGE *********************************/
102 /*************************************************************************/
103 // INITIALIZE CONTROL VECTORS
104 ROL::Ptr<std::vector<RealT> > z_ptr
105 = ROL::makePtr<std::vector<RealT>>(nx+2, 0.);
106 ROL::Ptr<std::vector<RealT> > zrand_ptr
107 = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
108 ROL::Ptr<std::vector<RealT> > gz_ptr
109 = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
110 ROL::Ptr<std::vector<RealT> > yz_ptr
111 = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
112 for (int i=0; i<nx+2; i++) {
113 (*zrand_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
114 (*yz_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
115 }
116 ROL::Ptr<ROL::Vector<RealT> > zp
117 = ROL::makePtr<PrimalControlVector>(z_ptr,fem);
118 ROL::Ptr<ROL::Vector<RealT> > zrandp
119 = ROL::makePtr<PrimalControlVector>(zrand_ptr,fem);
120 ROL::Ptr<ROL::Vector<RealT> > gzp
121 = ROL::makePtr<DualControlVector>(gz_ptr,fem);
122 ROL::Ptr<ROL::Vector<RealT> > yzp
123 = ROL::makePtr<PrimalControlVector>(yz_ptr,fem);
124 // INITIALIZE STATE VECTORS
125 ROL::Ptr<std::vector<RealT> > u_ptr
126 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
127 ROL::Ptr<std::vector<RealT> > gu_ptr
128 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
129 ROL::Ptr<std::vector<RealT> > yu_ptr
130 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
131 for (int i=0; i<nx; i++) {
132 (*yu_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
133 }
134 ROL::Ptr<ROL::Vector<RealT> > up
135 = ROL::makePtr<PrimalStateVector>(u_ptr,fem);
136 ROL::Ptr<ROL::Vector<RealT> > gup
137 = ROL::makePtr<DualStateVector>(gu_ptr,fem);
138 ROL::Ptr<ROL::Vector<RealT> > yup
139 = ROL::makePtr<PrimalStateVector>(yu_ptr,fem);
140 // INITIALIZE CONSTRAINT VECTORS
141 ROL::Ptr<std::vector<RealT> > c_ptr
142 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
143 ROL::Ptr<std::vector<RealT> > l_ptr
144 = ROL::makePtr<std::vector<RealT>>(nx, 1.);
145 for (int i=0; i<nx; i++) {
146 (*l_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
147 }
148 PrimalConstraintVector c(c_ptr,fem);
149 DualConstraintVector l(l_ptr,fem);
150 // INITIALIZE SIMOPT VECTORS
152 ROL::Vector_SimOpt<RealT> g(gup,gzp);
153 ROL::Vector_SimOpt<RealT> y(yup,yzp);
154 // READ IN XML INPUT
155 std::string filename = "input.xml";
156 auto parlist = ROL::getParametersFromXmlFile( filename );
157
158 /*************************************************************************/
159 /************* CHECK DERIVATIVES AND CONSISTENCY *************************/
160 /*************************************************************************/
161 zp->set(*zrandp);
162 // CHECK OBJECTIVE DERIVATIVES
163 obj.checkGradient(x,g,y,true,*outStream);
164 obj.checkHessVec(x,g,y,true,*outStream);
165 // CHECK EQUALITY CONSTRAINT DERIVATIVES
166 con.checkApplyJacobian(x,y,c,true,*outStream);
167 con.checkApplyAdjointHessian(x,*yup,y,g,true,*outStream);
168 // CHECK EQUALITY CONSTRAINT CONSISTENCY
169 con.checkSolve(*up,*zp,c,true,*outStream);
170 con.checkAdjointConsistencyJacobian_1(l,*yup,*up,*zp,true,*outStream);
171 con.checkAdjointConsistencyJacobian_2(l,*yzp,*up,*zp,true,*outStream);
172 con.checkInverseJacobian_1(c,*yup,*up,*zp,true,*outStream);
173 con.checkInverseAdjointJacobian_1(c,*yup,*up,*zp,true,*outStream);
174 *outStream << "\n";
175 // CHECK PENALTY OBJECTIVE DERIVATIVES
176 ROL::Ptr<ROL::Objective<RealT> > obj_ptr = ROL::makePtrFromRef(obj);
177 ROL::Ptr<ROL::Constraint<RealT> > con_ptr = ROL::makePtrFromRef(con);
178 ROL::Ptr<ROL::BoundConstraint<RealT> > bnd_ptr = ROL::makePtrFromRef(bnd);
179 ROL::MoreauYosidaPenalty<RealT> myPen(obj_ptr,bnd_ptr,x,*parlist);
180 myPen.checkGradient(x, y, true, *outStream);
181 myPen.checkHessVec(x, g, y, true, *outStream);
182 ROL::AugmentedLagrangian<RealT> myAugLag(obj_ptr,con_ptr,l,1.,x,c,*parlist);
183 myAugLag.checkGradient(x, y, true, *outStream);
184 myAugLag.checkHessVec(x, g, y, true, *outStream);
185 /*************************************************************************/
186 /************* RUN OPTIMIZATION ******************************************/
187 /*************************************************************************/
188 // SOLVE USING MOREAU-YOSIDA PENALTY
189 ROL::Ptr<ROL::Step<RealT>>
190 stepMY = ROL::makePtr<ROL::MoreauYosidaPenaltyStep<RealT>>(*parlist);
191 ROL::Ptr<ROL::StatusTest<RealT>>
192 statusMY = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
193 ROL::Algorithm<RealT> algoMY(stepMY,statusMY,false);
194 zp->set(*zrandp);
195 RealT zerotol = std::sqrt(ROL::ROL_EPSILON<RealT>());
196 con.solve(c,*up,*zp,zerotol);
197 obj.gradient_1(*gup,*up,*zp,zerotol);
198 gup->scale(-1.0);
199 con.applyInverseAdjointJacobian_1(l,*gup,*up,*zp,zerotol);
200 gup->zero(); c.zero();
201 algoMY.run(x, g, l, c, myPen, con, bnd, true, *outStream);
202 ROL::Ptr<ROL::Vector<RealT> > xMY = x.clone();
203 xMY->set(x);
204 // SOLVE USING AUGMENTED LAGRANGIAN
205 ROL::Ptr<ROL::Step<RealT>>
206 stepAL = ROL::makePtr<ROL::AugmentedLagrangianStep<RealT>>(*parlist);
207 ROL::Ptr<ROL::StatusTest<RealT>>
208 statusAL = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
209 ROL::Algorithm<RealT> algoAL(stepAL,statusAL,false);
210 zp->set(*zrandp);
211 con.solve(c,*up,*zp,zerotol);
212 obj.gradient_1(*gup,*up,*zp,zerotol);
213 gup->scale(-1.0);
214 con.applyInverseAdjointJacobian_1(l,*gup,*up,*zp,zerotol);
215 gup->zero(); c.zero();
216 algoAL.run(x, g, l, c, myAugLag, con, bnd, true, *outStream);
217 // COMPARE SOLUTIONS
218 ROL::Ptr<ROL::Vector<RealT> > err = x.clone();
219 err->set(x); err->axpy(-1.,*xMY);
220 errorFlag += ((err->norm() > 1.e-7*x.norm()) ? 1 : 0);
221 }
222 catch (std::logic_error& err) {
223 *outStream << err.what() << "\n";
224 errorFlag = -1000;
225 }; // end try
226
227 if (errorFlag != 0)
228 std::cout << "End Result: TEST FAILED\n";
229 else
230 std::cout << "End Result: TEST PASSED\n";
231
232 return 0;
233}
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
void applyInverseAdjointJacobian_1(ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the inverse of the adjoint of the partial constraint Jacobian at , , to the vector .
Definition test_04.hpp:772
void solve(ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Given , solve for .
Provides an interface to run optimization algorithms.
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
Provides the interface to evaluate the augmented Lagrangian.
virtual Real checkInverseJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual Real checkAdjointConsistencyJacobian_1(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
virtual Real checkAdjointConsistencyJacobian_2(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
virtual Real checkInverseAdjointJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual Real checkSolve(const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &c, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual std::vector< std::vector< Real > > checkApplyJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the constraint Jacobian application.
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian(const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the application of the adjoint of constraint Hessian.
Provides the interface to evaluate the Moreau-Yosida penalty function.
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Defines the linear algebra or vector space interface for simulation-based optimization.
ROL::Ptr< Vector< Real > > clone() const
Clone to make a new (uninitialized) vector.
Real norm() const
Returns where .
virtual void zero()
Set to zero vector.
int main(int argc, char *argv[])
L2VectorPrimal< RealT > PrimalControlVector
H1VectorPrimal< RealT > DualConstraintVector
H1VectorPrimal< RealT > PrimalStateVector
H1VectorDual< RealT > DualStateVector
L2VectorDual< RealT > DualControlVector
H1VectorDual< RealT > PrimalConstraintVector
double RealT
Provides definitions of equality constraint and objective for example_04.