ROL
burgers-control/example_03.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
15#include "example_03.hpp"
16
17typedef double RealT;
18
19int main(int argc, char *argv[]) {
20
21 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
22
23 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
24 int iprint = argc - 1;
25 ROL::Ptr<std::ostream> outStream;
26 ROL::nullstream bhs; // outputs nothing
27 if (iprint > 0)
28 outStream = ROL::makePtrFromRef(std::cout);
29 else
30 outStream = ROL::makePtrFromRef(bhs);
31
32 int errorFlag = 0;
33
34 // *** Example body.
35
36 try {
37 // Initialize full objective function.
38 int nx = 80; // Set spatial discretization.
39 int nt = 80; // Set temporal discretization.
40 RealT T = 1.0; // Set end time.
41 RealT alpha = 5e-2; // Set penalty parameter.
42 RealT nu = 1e-2; // Set viscosity parameter.
43 Objective_BurgersControl<RealT> obj(alpha,nx,nt,T);
44 // Initialize equality constraints
45 Constraint_BurgersControl<RealT> con(nx, nt, T, nu);
46 // Initialize iteration vectors.
47 ROL::Ptr<std::vector<RealT> > z_ptr = ROL::makePtr<std::vector<RealT>>((nx+2)*(nt+1), 1.0);
48 ROL::Ptr<std::vector<RealT> > gz_ptr = ROL::makePtr<std::vector<RealT>>((nx+2)*(nt+1), 1.0);
49 ROL::Ptr<std::vector<RealT> > yz_ptr = ROL::makePtr<std::vector<RealT>>((nx+2)*(nt+1), 1.0);
50 for (int i=0; i<(nx+2)*(nt+1); i++) {
51 (*z_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
52 (*yz_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
53 }
54 ROL::StdVector<RealT> z(z_ptr);
55 ROL::StdVector<RealT> gz(gz_ptr);
56 ROL::StdVector<RealT> yz(yz_ptr);
57 ROL::Ptr<ROL::Vector<RealT> > zp = ROL::makePtrFromRef(z);
58 ROL::Ptr<ROL::Vector<RealT> > gzp = ROL::makePtrFromRef(gz);
59 ROL::Ptr<ROL::Vector<RealT> > yzp = ROL::makePtrFromRef(yz);
60
61 ROL::Ptr<std::vector<RealT> > u_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
62 ROL::Ptr<std::vector<RealT> > gu_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
63 ROL::Ptr<std::vector<RealT> > yu_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
64 for (int i=0; i<nx*nt; i++) {
65 (*u_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
66 (*yu_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
67 }
68 ROL::StdVector<RealT> u(u_ptr);
69 ROL::StdVector<RealT> gu(gu_ptr);
70 ROL::StdVector<RealT> yu(yu_ptr);
71 ROL::Ptr<ROL::Vector<RealT> > up = ROL::makePtrFromRef(u);
72 ROL::Ptr<ROL::Vector<RealT> > gup = ROL::makePtrFromRef(gu);
73 ROL::Ptr<ROL::Vector<RealT> > yup = ROL::makePtrFromRef(yu);
74
75 ROL::Ptr<std::vector<RealT> > c_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
76 ROL::Ptr<std::vector<RealT> > l_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
77 ROL::StdVector<RealT> c(c_ptr);
78 ROL::StdVector<RealT> l(l_ptr);
79
83 // Check derivatives.
84 obj.checkGradient(x,x,y,true,*outStream);
85 obj.checkHessVec(x,x,y,true,*outStream);
86 con.checkApplyJacobian(x,y,c,true,*outStream);
87 //con.checkApplyAdjointJacobian(x,yu,c,x,true,*outStream);
88 con.checkApplyAdjointHessian(x,yu,y,x,true,*outStream);
89 // Check consistency of Jacobians and adjoint Jacobians.
90 con.checkAdjointConsistencyJacobian_1(c,yu,u,z,true,*outStream);
91 con.checkAdjointConsistencyJacobian_2(c,yz,u,z,true,*outStream);
92 // Check consistency of solves.
93 con.checkSolve(u,z,c,true,*outStream);
94 con.checkInverseJacobian_1(c,yu,u,z,true,*outStream);
95 con.checkInverseAdjointJacobian_1(yu,c,u,z,true,*outStream);
96
97 // Initialize reduced objective function.
98 ROL::Ptr<std::vector<RealT> > p_ptr = ROL::makePtr<std::vector<RealT>>(nx*nt, 1.0);
99 ROL::StdVector<RealT> p(p_ptr);
100 ROL::Ptr<ROL::Vector<RealT> > pp = ROL::makePtrFromRef(p);
101 ROL::Ptr<ROL::Objective_SimOpt<RealT> > pobj = ROL::makePtrFromRef(obj);
102 ROL::Ptr<ROL::Constraint_SimOpt<RealT> > pcon = ROL::makePtrFromRef(con);
103 ROL::Reduced_Objective_SimOpt<RealT> robj(pobj,pcon,up,zp,pp);
104 // Check derivatives.
105 robj.checkGradient(z,z,yz,true,*outStream);
106 robj.checkHessVec(z,z,yz,true,*outStream);
107 // Get input parameter list.
108 std::string filename = "input.xml";
109 auto parlist = ROL::getParametersFromXmlFile( filename );
110 parlist->sublist("Status Test").set("Gradient Tolerance",1.e-10);
111 parlist->sublist("Status Test").set("Constraint Tolerance",1.e-10);
112 parlist->sublist("Status Test").set("Step Tolerance",1.e-16);
113 parlist->sublist("Status Test").set("Iteration Limit",100);
114 // Build Algorithm pointer.
115 ROL::Ptr<ROL::Algorithm<RealT>> algo;
116 ROL::Ptr<ROL::Step<RealT>> step;
117 ROL::Ptr<ROL::StatusTest<RealT>> status;
118
119 // Solve using trust regions.
120 step = ROL::makePtr<ROL::TrustRegionStep<RealT>>(*parlist);
121 status = ROL::makePtr<ROL::StatusTest<RealT>>(*parlist);
122 algo = ROL::makePtr<ROL::Algorithm<RealT>>(step,status,false);
123 z.zero();
124 std::clock_t timer_tr = std::clock();
125 algo->run(z,robj,true,*outStream);
126 *outStream << "Trust-Region Newton required " << (std::clock()-timer_tr)/(RealT)CLOCKS_PER_SEC
127 << " seconds.\n";
128 ROL::Ptr<ROL::Vector<RealT> > zTR = z.clone();
129 zTR->set(z);
130
131 // Solve using a composite step method.
132 step = ROL::makePtr<ROL::CompositeStep<RealT>>(*parlist);
133 status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
134 algo = ROL::makePtr<ROL::Algorithm<RealT>>(step,status,false);
135 x.zero();
136 ROL::Elementwise::Fill<RealT> setFunc(0.25);
137 x.applyUnary(setFunc);
138 std::clock_t timer_cs = std::clock();
139 algo->run(x,g,l,c,obj,con,true,*outStream);
140 *outStream << "Composite Step required " << (std::clock()-timer_cs)/(RealT)CLOCKS_PER_SEC
141 << " seconds.\n";
142
143 // Compute error between solutions
144 ROL::Ptr<ROL::Vector<RealT> > err = z.clone();
145 err->set(*zTR); err->axpy(-1.,z);
146 errorFlag += (err->norm() > 1.e-4) ? 1 : 0;
147 if (errorFlag) {
148 *outStream << "\n\nControl error = " << err->norm() << "\n";
149 }
150
151// std::ofstream control;
152// control.open("control.txt");
153// for (int t = 0; t < nt+1; t++) {
154// for (int n = 0; n < nx+2; n++) {
155// control << (RealT)t/(RealT)nt << " "
156// << (RealT)n/((RealT)(nx+1)) << " "
157// << (*z_ptr)[t*(nx+2)+n] << "\n";
158// }
159// }
160// control.close();
161//
162// std::ofstream state;
163// state.open("state.txt");
164// for (int t = 0; t < nt; t++) {
165// for (int n = 0; n < nx; n++) {
166// state << (RealT)(t+1)/(RealT)nt << " "
167// << (RealT)(n+1)/((RealT)(nx+1)) << " "
168// << (*u_ptr)[t*nx+n] << "\n";
169// }
170// }
171// state.close();
172 }
173 catch (std::logic_error& err) {
174 *outStream << err.what() << "\n";
175 errorFlag = -1000;
176 }; // end try
177
178 if (errorFlag != 0)
179 std::cout << "End Result: TEST FAILED\n";
180 else
181 std::cout << "End Result: TEST PASSED\n";
182
183 return 0;
184
185}
186
int main(int argc, char *argv[])
virtual Real checkInverseJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual Real checkAdjointConsistencyJacobian_1(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
virtual Real checkAdjointConsistencyJacobian_2(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
virtual Real checkInverseAdjointJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual Real checkSolve(const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &c, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual std::vector< std::vector< Real > > checkApplyJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the constraint Jacobian application.
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian(const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the application of the adjoint of constraint Hessian.
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
virtual Ptr< Vector< Real > > clone() const
Clone to make a new (uninitialized) vector.
Defines the linear algebra or vector space interface for simulation-based optimization.
void applyUnary(const Elementwise::UnaryFunction< Real > &f)
virtual void zero()
Set to zero vector.