ROL
burgers-control/example_02.cpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
19#include "ROL_Stream.hpp"
20
21#include "Teuchos_GlobalMPISession.hpp"
22#include "Teuchos_LAPACK.hpp"
23
24#include <iostream>
25#include <algorithm>
26
27#include "example_02.hpp"
28
29typedef double RealT;
30
31int main(int argc, char *argv[]) {
32
33 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
34
35 // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
36 int iprint = argc - 1;
37 ROL::Ptr<std::ostream> outStream;
38 ROL::nullstream bhs; // outputs nothing
39 if (iprint > 0)
40 outStream = ROL::makePtrFromRef(std::cout);
41 else
42 outStream = ROL::makePtrFromRef(bhs);
43
44 int errorFlag = 0;
45
46 // *** Example body.
47
48 try {
49 // Initialize full objective function.
50 int nx = 256; // Set spatial discretization.
51 RealT alpha = 1.e-3; // Set penalty parameter.
52 RealT nu = 1e-2; // Viscosity parameter.
54 // Initialize equality constraints
56 ROL::ParameterList list;
57 list.sublist("SimOpt").sublist("Solve").set("Absolute Residual Tolerance",1.e2*ROL::ROL_EPSILON<RealT>());
58 con.setSolveParameters(list);
59 // Initialize iteration vectors.
60 ROL::Ptr<std::vector<RealT> > z_ptr = ROL::makePtr<std::vector<RealT>>(nx+2, 1.0);
61 ROL::Ptr<std::vector<RealT> > gz_ptr = ROL::makePtr<std::vector<RealT>>(nx+2, 1.0);
62 ROL::Ptr<std::vector<RealT> > yz_ptr = ROL::makePtr<std::vector<RealT>>(nx+2, 1.0);
63 for (int i=0; i<nx+2; i++) {
64 (*z_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
65 (*yz_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
66 }
67 ROL::StdVector<RealT> z(z_ptr);
68 ROL::StdVector<RealT> gz(gz_ptr);
69 ROL::StdVector<RealT> yz(yz_ptr);
70 ROL::Ptr<ROL::Vector<RealT> > zp = ROL::makePtrFromRef(z);
71 ROL::Ptr<ROL::Vector<RealT> > gzp = ROL::makePtrFromRef(z);
72 ROL::Ptr<ROL::Vector<RealT> > yzp = ROL::makePtrFromRef(yz);
73
74 ROL::Ptr<std::vector<RealT> > u_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
75 ROL::Ptr<std::vector<RealT> > gu_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
76 ROL::Ptr<std::vector<RealT> > yu_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
77 for (int i=0; i<nx; i++) {
78 (*u_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
79 (*yu_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
80 }
81 ROL::StdVector<RealT> u(u_ptr);
82 ROL::StdVector<RealT> gu(gu_ptr);
83 ROL::StdVector<RealT> yu(yu_ptr);
84 ROL::Ptr<ROL::Vector<RealT> > up = ROL::makePtrFromRef(u);
85 ROL::Ptr<ROL::Vector<RealT> > gup = ROL::makePtrFromRef(gu);
86 ROL::Ptr<ROL::Vector<RealT> > yup = ROL::makePtrFromRef(yu);
87
88 ROL::Ptr<std::vector<RealT> > c_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
89 ROL::Ptr<std::vector<RealT> > l_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
90 ROL::StdVector<RealT> c(c_ptr);
91 ROL::StdVector<RealT> l(l_ptr);
92
96
97 // Check derivatives.
98 obj.checkGradient(x,x,y,true,*outStream);
99 obj.checkHessVec(x,x,y,true,*outStream);
100 con.checkApplyJacobian(x,y,c,true,*outStream);
101 con.checkApplyAdjointJacobian(x,yu,c,x,true,*outStream);
102 con.checkApplyAdjointHessian(x,yu,y,x,true,*outStream);
103
104 // Initialize reduced objective function.
105 ROL::Ptr<std::vector<RealT> > p_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
106 ROL::StdVector<RealT> p(p_ptr);
107 ROL::Ptr<ROL::Vector<RealT> > pp = ROL::makePtrFromRef(p);
108 ROL::Ptr<ROL::Objective_SimOpt<RealT> > pobj = ROL::makePtrFromRef(obj);
109 ROL::Ptr<ROL::Constraint_SimOpt<RealT> > pcon = ROL::makePtrFromRef(con);
110 ROL::Reduced_Objective_SimOpt<RealT> robj(pobj,pcon,up,zp,pp);
111 // Check derivatives.
112 robj.checkGradient(z,z,yz,true,*outStream);
113 robj.checkHessVec(z,z,yz,true,*outStream);
114
115 // Get parameter list.
116 std::string filename = "input.xml";
117 auto parlist = ROL::getParametersFromXmlFile( filename );
118 parlist->sublist("Status Test").set("Gradient Tolerance",1.e-14);
119 parlist->sublist("Status Test").set("Constraint Tolerance",1.e-14);
120 parlist->sublist("Status Test").set("Step Tolerance",1.e-16);
121 parlist->sublist("Status Test").set("Iteration Limit",1000);
122
123 // Run equality-constrained optimization.
124 RealT zerotol = std::sqrt(ROL::ROL_EPSILON<RealT>());
125 z.zero();
126 con.solve(c,u,z,zerotol);
127 c.zero(); l.zero();
128 {
129 // Define algorithm.
131 // Run Algorithm
132 algo.run(x, obj, con, l, *outStream);
133 }
134 ROL::Ptr<ROL::Vector<RealT> > zCS = z.clone();
135 zCS->set(z);
136
137 // Run unconstrained optimization.
138 z.zero();
139 {
140 // Define algorithm.
142 // Run Algorithm
143 algo.run(z, z.dual(), robj, *outStream);
144 }
145
146 // Check solutions.
147 ROL::Ptr<ROL::Vector<RealT> > err = z.clone();
148 err->set(*zCS); err->axpy(-1.,z);
149 errorFlag += ((err->norm()) > 1.e-8) ? 1 : 0;
150 }
151 catch (std::logic_error& err) {
152 *outStream << err.what() << "\n";
153 errorFlag = -1000;
154 }; // end try
155
156 if (errorFlag != 0)
157 std::cout << "End Result: TEST FAILED\n";
158 else
159 std::cout << "End Result: TEST PASSED\n";
160
161 return 0;
162
163}
164
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
int main(int argc, char *argv[])
void solve(ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Given , solve for .
virtual void setSolveParameters(ParameterList &parlist)
Set solve parameters.
virtual std::vector< std::vector< Real > > checkApplyJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the constraint Jacobian application.
virtual std::vector< std::vector< Real > > checkApplyAdjointJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
Finite-difference check for the application of the adjoint of constraint Jacobian.
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian(const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the application of the adjoint of constraint Hessian.
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
virtual Ptr< Vector< Real > > clone() const
Clone to make a new (uninitialized) vector.
Provides an interface to run equality constrained optimization algorithms using the Composite-Step Tr...
virtual void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, Constraint< Real > &econ, Vector< Real > &emul, const Vector< Real > &eres, std::ostream &outStream=std::cout) override
Run algorithm on equality constrained problems (Type-E). This general interface supports the use of d...
Provides an interface to run trust-region methods for unconstrained optimization algorithms.
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, std::ostream &outStream=std::cout) override
Run algorithm on unconstrained problems (Type-U). This general interface supports the use of dual opt...
Defines the linear algebra or vector space interface for simulation-based optimization.
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis,...
virtual void zero()
Set to zero vector.