ROL
ROL_QuadraticPenalty_SimOpt.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_QUADRATICPENALTY_SIMOPT_H
11#define ROL_QUADRATICPENALTY_SIMOPT_H
12
15#include "ROL_Vector.hpp"
16#include "ROL_Types.hpp"
17#include "ROL_Ptr.hpp"
18#include <iostream>
19
54namespace ROL {
55
56template <class Real>
58private:
59 // Required for quadratic penalty definition
60 const ROL::Ptr<Constraint_SimOpt<Real> > con_;
61 ROL::Ptr<Vector<Real> > multiplier_;
63
64 // Auxiliary storage
65 ROL::Ptr<Vector<Real> > primalMultiplierVector_;
66 ROL::Ptr<Vector<Real> > dualSimVector_;
67 ROL::Ptr<Vector<Real> > dualOptVector_;
68 ROL::Ptr<Vector<Real> > primalConVector_;
69
70 // Constraint evaluations
71 ROL::Ptr<Vector<Real> > conValue_;
72
73 // Evaluation counters
74 int ncval_;
75
76 // User defined options
77 const bool useScaling_;
78 const int HessianApprox_;
79
80 // Flags to recompute quantities
82
83 void evaluateConstraint(const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
84 if ( !isConstraintComputed_ ) {
85 // Evaluate constraint
86 con_->value(*conValue_,u,z,tol); ncval_++;
88 }
89 }
90
91public:
93 const Vector<Real> &multiplier,
94 const Real penaltyParameter,
95 const Vector<Real> &simVec,
96 const Vector<Real> &optVec,
97 const Vector<Real> &conVec,
98 const bool useScaling = false,
99 const int HessianApprox = 0 )
100 : con_(con), penaltyParameter_(penaltyParameter), ncval_(0),
101 useScaling_(useScaling), HessianApprox_(HessianApprox), isConstraintComputed_(false) {
102
103 dualSimVector_ = simVec.dual().clone();
104 dualOptVector_ = optVec.dual().clone();
105 primalConVector_ = conVec.clone();
106 conValue_ = conVec.clone();
107 multiplier_ = multiplier.clone();
108 primalMultiplierVector_ = multiplier.clone();
109 }
110
111 virtual void update( const Vector<Real> &u, const Vector<Real> &z, bool flag = true, int iter = -1 ) {
112 con_->update(u,z,flag,iter);
113 isConstraintComputed_ = ( flag ? false : isConstraintComputed_ );
114 }
115
116 virtual Real value( const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
117 // Evaluate constraint
118 evaluateConstraint(u,z,tol);
119 // Apply Lagrange multiplier to constraint
120 Real cval = multiplier_->dot(conValue_->dual());
121 // Compute penalty term
122 Real pval = conValue_->dot(*conValue_);
123 // Compute quadratic penalty value
124 const Real half(0.5);
125 Real val(0);
126 if (useScaling_) {
127 val = cval/penaltyParameter_ + half*pval;
128 }
129 else {
130 val = cval + half*penaltyParameter_*pval;
131 }
132 return val;
133 }
134
135 virtual void gradient_1( Vector<Real> &g, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
136 // Evaluate constraint
137 evaluateConstraint(u,z,tol);
138 // Compute gradient of Augmented Lagrangian
140 if ( useScaling_ ) {
141 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
142 }
143 else {
146 }
147 con_->applyAdjointJacobian_1(g,*primalMultiplierVector_,u,z,tol);
148 }
149
150 virtual void gradient_2( Vector<Real> &g, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
151 // Evaluate constraint
152 evaluateConstraint(u,z,tol);
153 // Compute gradient of Augmented Lagrangian
155 if ( useScaling_ ) {
156 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
157 }
158 else {
161 }
162 con_->applyAdjointJacobian_2(g,*primalMultiplierVector_,u,z,tol);
163 }
164
165 virtual void hessVec_11( Vector<Real> &hv, const Vector<Real> &v,
166 const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
167 // Apply objective Hessian to a vector
168 if (HessianApprox_ < 2) {
169 con_->applyJacobian_1(*primalConVector_,v,u,z,tol);
170 con_->applyAdjointJacobian_1(hv,primalConVector_->dual(),u,z,tol);
171 if (!useScaling_) {
173 }
174
175 if (HessianApprox_ == 0) {
176 // Evaluate constraint
177 evaluateConstraint(u,z,tol);
178 // Apply Augmented Lagrangian Hessian to a vector
180 if ( useScaling_ ) {
181 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
182 }
183 else {
186 }
187 con_->applyAdjointHessian_11(*dualSimVector_,*primalMultiplierVector_,v,u,z,tol);
188 hv.plus(*dualSimVector_);
189 }
190 }
191 else {
192 hv.zero();
193 }
194 }
195
196 virtual void hessVec_12( Vector<Real> &hv, const Vector<Real> &v,
197 const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
198 // Apply objective Hessian to a vector
199 if (HessianApprox_ < 2) {
200 con_->applyJacobian_2(*primalConVector_,v,u,z,tol);
201 con_->applyAdjointJacobian_1(hv,primalConVector_->dual(),u,z,tol);
202 if (!useScaling_) {
204 }
205
206 if (HessianApprox_ == 0) {
207 // Evaluate constraint
208 evaluateConstraint(u,z,tol);
209 // Apply Augmented Lagrangian Hessian to a vector
211 if ( useScaling_ ) {
212 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
213 }
214 else {
217 }
218 con_->applyAdjointHessian_21(*dualSimVector_,*primalMultiplierVector_,v,u,z,tol);
219 hv.plus(*dualSimVector_);
220 }
221 }
222 else {
223 hv.zero();
224 }
225 }
226
227 virtual void hessVec_21( Vector<Real> &hv, const Vector<Real> &v,
228 const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
229 // Apply objective Hessian to a vector
230 if (HessianApprox_ < 2) {
231 con_->applyJacobian_1(*primalConVector_,v,u,z,tol);
232 con_->applyAdjointJacobian_2(hv,primalConVector_->dual(),u,z,tol);
233 if (!useScaling_) {
235 }
236
237 if (HessianApprox_ == 0) {
238 // Evaluate constraint
239 evaluateConstraint(u,z,tol);
240 // Apply Augmented Lagrangian Hessian to a vector
242 if ( useScaling_ ) {
243 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
244 }
245 else {
248 }
249 con_->applyAdjointHessian_12(*dualOptVector_,*primalMultiplierVector_,v,u,z,tol);
250 hv.plus(*dualOptVector_);
251 }
252 }
253 else {
254 hv.zero();
255 }
256 }
257
258 virtual void hessVec_22( Vector<Real> &hv, const Vector<Real> &v,
259 const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
260 // Apply objective Hessian to a vector
261 if (HessianApprox_ < 2) {
262 con_->applyJacobian_2(*primalConVector_,v,u,z,tol);
263 con_->applyAdjointJacobian_2(hv,primalConVector_->dual(),u,z,tol);
264 if (!useScaling_) {
266 }
267
268 if (HessianApprox_ == 0) {
269 // Evaluate constraint
270 evaluateConstraint(u,z,tol);
271 // Apply Augmented Lagrangian Hessian to a vector
273 if ( useScaling_ ) {
274 primalMultiplierVector_->axpy(static_cast<Real>(1)/penaltyParameter_,*multiplier_);
275 }
276 else {
279 }
280 con_->applyAdjointHessian_22(*dualOptVector_,*primalMultiplierVector_,v,u,z,tol);
281 hv.plus(*dualOptVector_);
282 }
283 }
284 else {
285 hv.zero();
286 }
287 }
288
289 // Return constraint value
290 virtual void getConstraintVec(Vector<Real> &c, const Vector<Real> &u, const Vector<Real> &z) {
291 Real tol = std::sqrt(ROL_EPSILON<Real>());
292 // Evaluate constraint
293 evaluateConstraint(u,z,tol);
294 c.set(*conValue_);
295 }
296
297 // Return total number of constraint evaluations
298 virtual int getNumberConstraintEvaluations(void) const {
299 return ncval_;
300 }
301
302 // Reset with upated penalty parameter
303 virtual void reset(const Vector<Real> &multiplier, const Real penaltyParameter) {
304 ncval_ = 0;
305 multiplier_->set(multiplier);
306 penaltyParameter_ = penaltyParameter;
307 }
308}; // class AugmentedLagrangian
309
310} // namespace ROL
311
312#endif
Contains definitions of custom data types in ROL.
Defines the constraint operator interface for simulation-based optimization.
Provides the interface to evaluate simulation-based objective functions.
Provides the interface to evaluate the quadratic SimOpt constraint penalty.
ROL::Ptr< Vector< Real > > primalConVector_
virtual void reset(const Vector< Real > &multiplier, const Real penaltyParameter)
virtual void hessVec_12(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
virtual void hessVec_21(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
ROL::Ptr< Vector< Real > > dualSimVector_
virtual void gradient_2(Vector< Real > &g, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute gradient with respect to second component.
virtual int getNumberConstraintEvaluations(void) const
ROL::Ptr< Vector< Real > > dualOptVector_
QuadraticPenalty_SimOpt(const ROL::Ptr< Constraint_SimOpt< Real > > &con, const Vector< Real > &multiplier, const Real penaltyParameter, const Vector< Real > &simVec, const Vector< Real > &optVec, const Vector< Real > &conVec, const bool useScaling=false, const int HessianApprox=0)
virtual Real value(const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute value.
ROL::Ptr< Vector< Real > > primalMultiplierVector_
virtual void getConstraintVec(Vector< Real > &c, const Vector< Real > &u, const Vector< Real > &z)
virtual void gradient_1(Vector< Real > &g, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute gradient with respect to first component.
virtual void hessVec_11(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Apply Hessian approximation to vector.
void evaluateConstraint(const Vector< Real > &u, const Vector< Real > &z, Real &tol)
virtual void hessVec_22(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
virtual void update(const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1)
Update objective function. u is an iterate, z is an iterate, flag = true if the iterate has changed...
const ROL::Ptr< Constraint_SimOpt< Real > > con_
Defines the linear algebra or vector space interface.
virtual void set(const Vector &x)
Set where .
virtual void scale(const Real alpha)=0
Compute where .
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis,...
virtual void plus(const Vector &x)=0
Compute , where .
virtual void zero()
Set to zero vector.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.