ROL
ROL_ProjectedSecantStep.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_PROJECTEDSECANTSTEP_H
11#define ROL_PROJECTEDSECANTSTEP_H
12
13#include "ROL_Types.hpp"
14#include "ROL_Step.hpp"
15#include "ROL_Secant.hpp"
16
23namespace ROL {
24
25template <class Real>
26class ProjectedSecantStep : public Step<Real> {
27private:
28
29 ROL::Ptr<Secant<Real> > secant_;
31 ROL::Ptr<Vector<Real> > d_;
32 ROL::Ptr<Vector<Real> > gp_;
34 const bool computeObj_;
36
37public:
38
39 using Step<Real>::initialize;
40 using Step<Real>::compute;
41 using Step<Real>::update;
42
51 ProjectedSecantStep( ROL::ParameterList &parlist,
52 const ROL::Ptr<Secant<Real> > &secant = ROL::nullPtr,
53 const bool computeObj = true )
54 : Step<Real>(), secant_(secant), d_(ROL::nullPtr), gp_(ROL::nullPtr),
55 verbosity_(0), computeObj_(computeObj), useProjectedGrad_(false) {
56 // Parse ParameterList
57 ROL::ParameterList& Glist = parlist.sublist("General");
58 useProjectedGrad_ = Glist.get("Projected Gradient Criticality Measure", false);
59 verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
60 // Initialize secant object
61 if ( secant == ROL::nullPtr ) {
62 std::string secantType = parlist.sublist("General").sublist("Secant").get("Type","Limited-Memory BFGS");
63 esec_ = StringToESecant(secantType);
64 secant_ = SecantFactory<Real>(parlist);
65 }
66 }
67
68 void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
70 AlgorithmState<Real> &algo_state ) {
71 Step<Real>::initialize(x,s,g,obj,bnd,algo_state);
72 d_ = s.clone();
73 gp_ = g.clone();
74 }
75
76 void compute( Vector<Real> &s, const Vector<Real> &x,
78 AlgorithmState<Real> &algo_state ) {
79 ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
80 Real one(1);
81
82 // Compute projected secant step
83 // ---> Apply inactive-inactive block of inverse secant to gradient
84 gp_->set(*(step_state->gradientVec));
85 bnd.pruneActive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
86 secant_->applyH(s,*gp_);
87 bnd.pruneActive(s,*(step_state->gradientVec),x,algo_state.gnorm);
88 // ---> Add in active gradient components
89 gp_->set(*(step_state->gradientVec));
90 bnd.pruneInactive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
91 s.plus(gp_->dual());
92 s.scale(-one);
93 }
94
95 void update( Vector<Real> &x, const Vector<Real> &s,
97 AlgorithmState<Real> &algo_state ) {
98 Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1);
99 ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
100
101 // Update iterate and store previous step
102 algo_state.iter++;
103 d_->set(x);
104 x.plus(s);
105 bnd.project(x);
106 (step_state->descentVec)->set(x);
107 (step_state->descentVec)->axpy(-one,*d_);
108 algo_state.snorm = s.norm();
109
110 // Compute new gradient
111 gp_->set(*(step_state->gradientVec));
112 obj.update(x,true,algo_state.iter);
113 if ( computeObj_ ) {
114 algo_state.value = obj.value(x,tol);
115 algo_state.nfval++;
116 }
117 obj.gradient(*(step_state->gradientVec),x,tol);
118 algo_state.ngrad++;
119
120 // Update Secant Information
121 secant_->updateStorage(x,*(step_state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
122
123 // Update algorithm state
124 (algo_state.iterateVec)->set(x);
125 if ( useProjectedGrad_ ) {
126 gp_->set(*(step_state->gradientVec));
127 bnd.computeProjectedGradient( *gp_, x );
128 algo_state.gnorm = gp_->norm();
129 }
130 else {
131 d_->set(x);
132 d_->axpy(-one,(step_state->gradientVec)->dual());
133 bnd.project(*d_);
134 d_->axpy(-one,x);
135 algo_state.gnorm = d_->norm();
136 }
137 }
138
139 std::string printHeader( void ) const {
140 std::stringstream hist;
141
142 if( verbosity_>0 ) {
143 hist << std::string(109,'-') << "\n";
145 hist << " status output definitions\n\n";
146 hist << " iter - Number of iterates (steps taken) \n";
147 hist << " value - Objective function value \n";
148 hist << " gnorm - Norm of the gradient\n";
149 hist << " snorm - Norm of the step (update to optimization vector)\n";
150 hist << " #fval - Cumulative number of times the objective function was evaluated\n";
151 hist << " #grad - Number of times the gradient was computed\n";
152 hist << std::string(109,'-') << "\n";
153 }
154
155 hist << " ";
156 hist << std::setw(6) << std::left << "iter";
157 hist << std::setw(15) << std::left << "value";
158 hist << std::setw(15) << std::left << "gnorm";
159 hist << std::setw(15) << std::left << "snorm";
160 hist << std::setw(10) << std::left << "#fval";
161 hist << std::setw(10) << std::left << "#grad";
162 hist << "\n";
163 return hist.str();
164 }
165 std::string printName( void ) const {
166 std::stringstream hist;
167 hist << "\n" << EDescentToString(DESCENT_SECANT);
168 hist << " with " << ESecantToString(esec_) << "\n";
169 return hist.str();
170 }
171 std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
172 std::stringstream hist;
173 hist << std::scientific << std::setprecision(6);
174 if ( algo_state.iter == 0 ) {
175 hist << printName();
176 }
177 if ( print_header ) {
178 hist << printHeader();
179 }
180 if ( algo_state.iter == 0 ) {
181 hist << " ";
182 hist << std::setw(6) << std::left << algo_state.iter;
183 hist << std::setw(15) << std::left << algo_state.value;
184 hist << std::setw(15) << std::left << algo_state.gnorm;
185 hist << "\n";
186 }
187 else {
188 hist << " ";
189 hist << std::setw(6) << std::left << algo_state.iter;
190 hist << std::setw(15) << std::left << algo_state.value;
191 hist << std::setw(15) << std::left << algo_state.gnorm;
192 hist << std::setw(15) << std::left << algo_state.snorm;
193 hist << std::setw(10) << std::left << algo_state.nfval;
194 hist << std::setw(10) << std::left << algo_state.ngrad;
195 hist << "\n";
196 }
197 return hist.str();
198 }
199}; // class ProjectedSecantStep
200
201} // namespace ROL
202
203#endif
Contains definitions of custom data types in ROL.
Provides the interface to apply upper and lower bound constraints.
void pruneInactive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the -inactive set.
void pruneActive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the -active set.
void computeProjectedGradient(Vector< Real > &g, const Vector< Real > &x)
Compute projected gradient.
virtual void project(Vector< Real > &x)
Project optimization variables onto the bounds.
Provides the interface to evaluate objective functions.
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
Provides the interface to compute optimization steps with projected secant method using line search.
void compute(Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step.
ProjectedSecantStep(ROL::ParameterList &parlist, const ROL::Ptr< Secant< Real > > &secant=ROL::nullPtr, const bool computeObj=true)
Constructor.
std::string printName(void) const
Print step name.
std::string print(AlgorithmState< Real > &algo_state, bool print_header=false) const
Print iterate status.
bool useProjectedGrad_
Whether or not to use to the projected gradient criticality measure.
void update(Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful.
ROL::Ptr< Vector< Real > > d_
Additional vector storage.
void initialize(Vector< Real > &x, const Vector< Real > &s, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with bound constraint.
ROL::Ptr< Secant< Real > > secant_
Secant object (used for quasi-Newton)
ROL::Ptr< Vector< Real > > gp_
Additional vector storage.
std::string printHeader(void) const
Print iterate header.
Provides interface for and implements limited-memory secant operators.
Provides the interface to compute optimization steps.
Definition ROL_Step.hpp:34
virtual void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &con, AlgorithmState< Real > &algo_state)
Initialize step with bound constraint.
Definition ROL_Step.hpp:54
ROL::Ptr< StepState< Real > > getState(void)
Definition ROL_Step.hpp:39
Defines the linear algebra or vector space interface.
virtual Real norm() const =0
Returns where .
virtual void scale(const Real alpha)=0
Compute where .
virtual void plus(const Vector &x)=0
Compute , where .
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
@ DESCENT_SECANT
ESecant StringToESecant(std::string s)
std::string EDescentToString(EDescent tr)
std::string ESecantToString(ESecant tr)
State for algorithm class. Will be used for restarts.
ROL::Ptr< Vector< Real > > iterateVec