ROL
ROL_ProjectedNewtonStep.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_PROJECTEDNEWTONSTEP_H
11#define ROL_PROJECTEDNEWTONSTEP_H
12
13#include "ROL_Types.hpp"
14#include "ROL_Step.hpp"
15
22namespace ROL {
23
24template <class Real>
25class ProjectedNewtonStep : public Step<Real> {
26private:
27
28 ROL::Ptr<Vector<Real> > gp_;
29 ROL::Ptr<Vector<Real> > d_;
31 const bool computeObj_;
33
34public:
35
36 using Step<Real>::initialize;
37 using Step<Real>::compute;
38 using Step<Real>::update;
39
47 ProjectedNewtonStep( ROL::ParameterList &parlist, const bool computeObj = true )
48 : Step<Real>(), gp_(ROL::nullPtr), d_(ROL::nullPtr),
49 verbosity_(0), computeObj_(computeObj), useProjectedGrad_(false) {
50 // Parse ParameterList
51 ROL::ParameterList& Glist = parlist.sublist("General");
52 useProjectedGrad_ = Glist.get("Projected Gradient Criticality Measure", false);
53 verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
54 }
55
56 void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
58 AlgorithmState<Real> &algo_state ) {
59 Step<Real>::initialize(x,s,g,obj,bnd,algo_state);
60 gp_ = g.clone();
61 d_ = s.clone();
62 }
63
64 void compute( Vector<Real> &s, const Vector<Real> &x,
66 AlgorithmState<Real> &algo_state ) {
67 Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1);
68 ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
69
70 // Compute projected Newton step
71 // ---> Apply inactive-inactive block of inverse hessian to gradient
72 gp_->set(*(step_state->gradientVec));
73 bnd.pruneActive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
74 obj.invHessVec(s,*gp_,x,tol);
75 bnd.pruneActive(s,*(step_state->gradientVec),x,algo_state.gnorm);
76 // ---> Add in active gradient components
77 gp_->set(*(step_state->gradientVec));
78 bnd.pruneInactive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
79 s.plus(gp_->dual());
80 s.scale(-one);
81 }
82
83 void update( Vector<Real> &x, const Vector<Real> &s,
85 AlgorithmState<Real> &algo_state ) {
86 Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1);
87 ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
88
89 // Update iterate and store previous step
90 algo_state.iter++;
91 d_->set(x);
92 x.plus(s);
93 bnd.project(x);
94 (step_state->descentVec)->set(x);
95 (step_state->descentVec)->axpy(-one,*d_);
96 algo_state.snorm = s.norm();
97
98 // Compute new gradient
99 obj.update(x,true,algo_state.iter);
100 if ( computeObj_ ) {
101 algo_state.value = obj.value(x,tol);
102 algo_state.nfval++;
103 }
104 obj.gradient(*(step_state->gradientVec),x,tol);
105 algo_state.ngrad++;
106
107 // Update algorithm state
108 (algo_state.iterateVec)->set(x);
109 if ( useProjectedGrad_ ) {
110 gp_->set(*(step_state->gradientVec));
111 bnd.computeProjectedGradient( *gp_, x );
112 algo_state.gnorm = gp_->norm();
113 }
114 else {
115 d_->set(x);
116 d_->axpy(-one,(step_state->gradientVec)->dual());
117 bnd.project(*d_);
118 d_->axpy(-one,x);
119 algo_state.gnorm = d_->norm();
120 }
121 }
122
123 std::string printHeader( void ) const {
124 std::stringstream hist;
125
126 if( verbosity_>0 ) {
127 hist << std::string(109,'-') << "\n";
129 hist << " status output definitions\n\n";
130 hist << " iter - Number of iterates (steps taken) \n";
131 hist << " value - Objective function value \n";
132 hist << " gnorm - Norm of the gradient\n";
133 hist << " snorm - Norm of the step (update to optimization vector)\n";
134 hist << " #fval - Cumulative number of times the objective function was evaluated\n";
135 hist << " #grad - Number of times the gradient was computed\n";
136 hist << std::string(109,'-') << "\n";
137 }
138
139 hist << " ";
140 hist << std::setw(6) << std::left << "iter";
141 hist << std::setw(15) << std::left << "value";
142 hist << std::setw(15) << std::left << "gnorm";
143 hist << std::setw(15) << std::left << "snorm";
144 hist << std::setw(10) << std::left << "#fval";
145 hist << std::setw(10) << std::left << "#grad";
146 hist << "\n";
147 return hist.str();
148 }
149 std::string printName( void ) const {
150 std::stringstream hist;
151 hist << "\n" << EDescentToString(DESCENT_NEWTON) << "\n";
152 return hist.str();
153 }
154 std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
155 std::stringstream hist;
156 hist << std::scientific << std::setprecision(6);
157 if ( algo_state.iter == 0 ) {
158 hist << printName();
159 }
160 if ( print_header ) {
161 hist << printHeader();
162 }
163 if ( algo_state.iter == 0 ) {
164 hist << " ";
165 hist << std::setw(6) << std::left << algo_state.iter;
166 hist << std::setw(15) << std::left << algo_state.value;
167 hist << std::setw(15) << std::left << algo_state.gnorm;
168 hist << "\n";
169 }
170 else {
171 hist << " ";
172 hist << std::setw(6) << std::left << algo_state.iter;
173 hist << std::setw(15) << std::left << algo_state.value;
174 hist << std::setw(15) << std::left << algo_state.gnorm;
175 hist << std::setw(15) << std::left << algo_state.snorm;
176 hist << std::setw(10) << std::left << algo_state.nfval;
177 hist << std::setw(10) << std::left << algo_state.ngrad;
178 hist << "\n";
179 }
180 return hist.str();
181 }
182}; // class ProjectedNewtonStep
183
184} // namespace ROL
185
186#endif
Contains definitions of custom data types in ROL.
Provides the interface to apply upper and lower bound constraints.
void pruneInactive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the -inactive set.
void pruneActive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the -active set.
void computeProjectedGradient(Vector< Real > &g, const Vector< Real > &x)
Compute projected gradient.
virtual void project(Vector< Real > &x)
Project optimization variables onto the bounds.
Provides the interface to evaluate objective functions.
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
virtual void invHessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply inverse Hessian approximation to vector.
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
Provides the interface to compute optimization steps with projected Newton's method using line search...
ROL::Ptr< Vector< Real > > gp_
Additional vector storage.
std::string printHeader(void) const
Print iterate header.
void update(Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful.
std::string print(AlgorithmState< Real > &algo_state, bool print_header=false) const
Print iterate status.
ROL::Ptr< Vector< Real > > d_
Additional vector storage.
ProjectedNewtonStep(ROL::ParameterList &parlist, const bool computeObj=true)
Constructor.
void compute(Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step.
void initialize(Vector< Real > &x, const Vector< Real > &s, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with bound constraint.
std::string printName(void) const
Print step name.
bool useProjectedGrad_
Whether or not to use to the projected gradient criticality measure.
Provides the interface to compute optimization steps.
Definition ROL_Step.hpp:34
virtual void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &con, AlgorithmState< Real > &algo_state)
Initialize step with bound constraint.
Definition ROL_Step.hpp:54
ROL::Ptr< StepState< Real > > getState(void)
Definition ROL_Step.hpp:39
Defines the linear algebra or vector space interface.
virtual Real norm() const =0
Returns where .
virtual void scale(const Real alpha)=0
Compute where .
virtual void plus(const Vector &x)=0
Compute , where .
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
@ DESCENT_NEWTON
std::string EDescentToString(EDescent tr)
State for algorithm class. Will be used for restarts.
ROL::Ptr< Vector< Real > > iterateVec