ROL
ROL_PH_RegretObjective.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef PH_REGRETOBJECTIVE_H
11#define PH_REGRETOBJECTIVE_H
12
13#include "ROL_Objective.hpp"
15
22namespace ROL {
23
24template <class Real>
25class PH_RegretObjective : public Objective<Real> {
26private:
27 const Ptr<Objective<Real>> obj_;
28 Ptr<ExpectationQuad<Real>> quad_;
29
31 Real val_;
32
35 Ptr<Vector<Real>> g_;
36
37 void getValue(const Vector<Real> &x, Real &tol) {
38 if (!isValueComputed_) {
39 val_ = obj_->value(x,tol);
40 isValueComputed_ = true;
41 }
42 }
43
44 void getGradient(const Vector<Real> &x, Real &tol) {
46 g_ = x.dual().clone();
48 }
50 obj_->gradient(*g_,x,tol);
52 }
53 }
54
55public:
56
58 ParameterList &parlist)
59 : obj_(obj),
60 isValueComputed_(false),
62 isGradientComputed_(false) {
63 std::string regret = parlist.sublist("SOL").sublist("Regret Measure").get("Name","Mean Absolute Loss");
65 switch(ed) {
67 quad_ = makePtr<QuantileQuadrangle<Real>>(parlist); break;
69 quad_ = makePtr<MoreauYosidaCVaR<Real>>(parlist); break;
71 quad_ = makePtr<GenMoreauYosidaCVaR<Real>>(parlist); break;
73 quad_ = makePtr<LogExponentialQuadrangle<Real>>(parlist); break;
75 quad_ = makePtr<MeanVarianceQuadrangle<Real>>(parlist); break;
77 quad_ = makePtr<TruncatedMeanQuadrangle<Real>>(parlist); break;
79 quad_ = makePtr<LogQuantileQuadrangle<Real>>(parlist); break;
81 quad_ = makePtr<SmoothedWorstCaseQuadrangle<Real>>(parlist); break;
82 default:
83 ROL_TEST_FOR_EXCEPTION(true,std::invalid_argument,
84 "Invalid regret measure type " << regret << "!");
85 }
86 }
87
88 void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {
89 obj_->update(x,flag,iter);
90 isValueComputed_ = false;
91 isGradientComputed_ = false;
92 }
93
94 Real value( const Vector<Real> &x, Real &tol ) {
95 getValue(x,tol);
96 Real reg = quad_->regret(val_,0);
97 return reg;
98 }
99
100 void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
101 getValue(x,tol);
102 Real reg = quad_->regret(val_,1);
103 getGradient(x,tol);
104 g.set(*g_); g.scale(reg);
105 }
106
107 void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
108 getValue(x,tol);
109 Real reg1 = quad_->regret(val_,1);
110 Real reg2 = quad_->regret(val_,2);
111 getGradient(x,tol);
112 //Real gv = v.dot(g_->dual());
113 Real gv = v.apply(*g_);
114 obj_->hessVec(hv,v,x,tol);
115 hv.scale(reg1); hv.axpy(reg2*gv,*g_);
116 }
117
118 void setParameter(const std::vector<Real> &param) {
119 obj_->setParameter(param);
121 }
122
123};
124
125}
126#endif
Provides the interface to evaluate objective functions.
virtual void setParameter(const std::vector< Real > &param)
Provides the interface for the progressive hedging regret objective.
void getValue(const Vector< Real > &x, Real &tol)
const Ptr< Objective< Real > > obj_
void setParameter(const std::vector< Real > &param)
Ptr< ExpectationQuad< Real > > quad_
void update(const Vector< Real > &x, bool flag=true, int iter=-1)
Update objective function.
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
Real value(const Vector< Real > &x, Real &tol)
Compute value.
PH_RegretObjective(const Ptr< Objective< Real > > &obj, ParameterList &parlist)
void getGradient(const Vector< Real > &x, Real &tol)
void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
Defines the linear algebra or vector space interface.
virtual Real apply(const Vector< Real > &x) const
Apply to a dual vector. This is equivalent to the call .
virtual void set(const Vector &x)
Set where .
virtual void scale(const Real alpha)=0
Compute where .
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis,...
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
@ REGRETMEASURE_GENMOREAUYOSIDAMEANABSOLUTELOSS
@ REGRETMEASURE_MOREAUYOSIDAMEANABSOLUTELOSS
ERegretMeasure StringToERegretMeasure(std::string s)