ROL
ROL_PD_HMCR2.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_PD_HMCR2_HPP
11#define ROL_PD_HMCR2_HPP
12
14#include "ROL_Types.hpp"
15
16namespace ROL {
17
18template<class Real>
19class PD_HMCR2 : public PD_RandVarFunctional<Real> {
20private:
21 Real beta_;
23
24 Ptr<ScalarController<Real>> values_;
25 Ptr<ScalarController<Real>> gradvecs_;
26 Ptr<VectorController<Real>> gradients_;
27 Ptr<VectorController<Real>> hessvecs_;
28
29 using RandVarFunctional<Real>::val_;
30 using RandVarFunctional<Real>::g_;
31 using RandVarFunctional<Real>::gv_;
32 using RandVarFunctional<Real>::hv_;
34
35 using RandVarFunctional<Real>::point_;
37
42
47
48 void initializeStorage(void) {
49 values_ = makePtr<ScalarController<Real>>();
50 gradvecs_ = makePtr<ScalarController<Real>>();
51 gradients_ = makePtr<VectorController<Real>>();
52 hessvecs_ = makePtr<VectorController<Real>>();
53
56 }
57
58 void clear(void) {
59 gradvecs_->reset();
60 hessvecs_->reset();
61 }
62
63 void checkInputs(void) {
64 Real zero(0), one(1);
65 ROL_TEST_FOR_EXCEPTION((beta_ < zero) || (beta_ >= one), std::invalid_argument,
66 ">>> ERROR (ROL::PD_HMCR2): Confidence parameter beta is out of range!");
68 }
69
70public:
71 PD_HMCR2(const Real beta)
72 : PD_RandVarFunctional<Real>(), beta_(beta) {
74 }
75
76 void setStorage(const Ptr<ScalarController<Real>> &value_storage,
77 const Ptr<VectorController<Real>> &gradient_storage) {
78 values_ = value_storage;
79 gradients_ = gradient_storage;
81 }
82
83 void setHessVecStorage(const Ptr<ScalarController<Real>> &gradvec_storage,
84 const Ptr<VectorController<Real>> &hessvec_storage) {
85 gradvecs_ = gradvec_storage;
86 hessvecs_ = hessvec_storage;
88 }
89
91 const Real zero(0), two(2);
92 Real val(0), lold(0), lnew(0), mdiff(0), gdiff(0), sum(0), gsum(0);
93 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
94 values_->get(val, sampler.getMyPoint(i));
95 getMultiplier(lold, sampler.getMyPoint(i));
96 lnew = std::max(zero, getPenaltyParameter()*val+lold);
97 sum += sampler.getMyWeight(i) * std::pow(lnew,two);
98 }
99 sampler.sumAll(&sum,&gsum,1);
100 gsum = std::sqrt(gsum);
101 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
102 values_->get(val, sampler.getMyPoint(i));
103 getMultiplier(lold, sampler.getMyPoint(i));
104 lnew = std::max(zero, getPenaltyParameter()*val+lold)/gsum;
105 mdiff += sampler.getMyWeight(i) * std::pow(lnew-lold,2);
106 setMultiplier(lnew, sampler.getMyPoint(i));
107 }
108 sampler.sumAll(&mdiff,&gdiff,1);
109 gdiff = std::sqrt(gdiff);
110 return gdiff;
111 }
112
113 void initialize(const Vector<Real> &x) {
115 mScalar1_ = static_cast<Real>(0);
116 mScalar2_ = static_cast<Real>(0);
117 clear();
118 }
119
121 const Vector<Real> &x,
122 const std::vector<Real> &xstat,
123 Real &tol) {
124 const Real zero(0), two(2);
125 Real lam(0);
126 getMultiplier(lam, point_);
127 Real val = computeValue(obj, x, tol);
128 Real arg = val - xstat[0];
129 Real pf = std::max(zero, arg + lam/getPenaltyParameter());
130 val_ += weight_ * std::pow(pf,two);
131 setValue(arg, point_);
132 }
133
134 Real getValue(const Vector<Real> &x,
135 const std::vector<Real> &xstat,
136 SampleGenerator<Real> &sampler) {
137 const Real half(0.5), one(1);
138 Real ev(0);
139 sampler.sumAll(&val_, &ev, 1);
140 Real norm = std::sqrt(ev);
141 Real sig = one/(one-beta_);
142 Real val = (norm <= sig/getPenaltyParameter()
143 ? half * getPenaltyParameter() * ev
144 : sig * (norm - sig*half/getPenaltyParameter()));
145 return xstat[0] + val;
146 }
147
149 const Vector<Real> &x,
150 const std::vector<Real> &xstat,
151 Real &tol) {
152 const Real zero(0), two(2);
153 Real lam(0);
154 getMultiplier(lam, point_);
155 Real val = computeValue(obj, x, tol);
156 Real arg = val - xstat[0];
157 Real pf = std::max(zero, arg + lam/getPenaltyParameter());
158 if ( pf > zero ) {
159 val_ += weight_ * pf;
160 gv_ += weight_ * std::pow(pf,two);
161 computeGradient(*dualVector_, obj, x, tol);
162 g_->axpy(weight_ * pf, *dualVector_);
163 }
164 }
165
167 std::vector<Real> &gstat,
168 const Vector<Real> &x,
169 const std::vector<Real> &xstat,
170 SampleGenerator<Real> &sampler) {
171 const Real one(1);
172 std::vector<Real> mv = {val_, gv_};
173 std::vector<Real> ev(2,0);
174 sampler.sumAll(&mv[0], &ev[0], 2);
175 Real norm = std::sqrt(ev[1]);
176 Real sig = one/(one-beta_);
177 Real scal = (norm <= sig/getPenaltyParameter()
179 : sig/norm);
180 gstat[0] = one - scal * ev[0];
181 sampler.sumAll(*g_, g);
182 g.scale(scal);
183 }
184
186 const Vector<Real> &v,
187 const std::vector<Real> &vstat,
188 const Vector<Real> &x,
189 const std::vector<Real> &xstat,
190 Real &tol) {
191 const Real zero(0), two(2);
192 Real lam(0);
193 getMultiplier(lam, point_);
194 Real val = computeValue(obj, x, tol);
195 Real arg = val - xstat[0];
196 Real pf = std::max(zero, arg + lam/getPenaltyParameter());
197 if ( pf > zero ) {
198 val_ += weight_ * std::pow(pf,two);
199 mScalar1_ += weight_ * pf;
200
201 Real gv = computeGradVec(*dualVector_, obj, v, x, tol);
202 mScalar2_ += weight_ * pf * gv;
203 gv_ += weight_ * (vstat[0] - gv);
204 g_->axpy(weight_ * pf, *dualVector_);
205 hv_->axpy(weight_ * (gv - vstat[0]), *dualVector_);
206 computeHessVec(*dualVector_, obj, v, x, tol);
207 hv_->axpy(weight_ * pf, *dualVector_);
208 }
209 }
210
212 std::vector<Real> &hvstat,
213 const Vector<Real> &v,
214 const std::vector<Real> &vstat,
215 const Vector<Real> &x,
216 const std::vector<Real> &xstat,
217 SampleGenerator<Real> &sampler) {
218 const Real one(1);
219 std::vector<Real> mv = {val_, gv_, mScalar1_, mScalar2_};
220 std::vector<Real> ev(4,0);
221 sampler.sumAll(&mv[0],&ev[0],4);
222 Real norm = std::sqrt(ev[0]);
223 Real sig = one/(one-beta_);
224 Real scal = (norm <= sig/getPenaltyParameter()
226 : sig/norm);
227 hvstat[0] = scal * ev[1];
228 sampler.sumAll(*hv_,hv);
229 hv.scale(scal);
230 if (norm > sig/getPenaltyParameter()) {
231 Real norm3 = ev[0]*norm;
232 hvstat[0] += sig/norm3 * (ev[3] - ev[2]*vstat[0]) * ev[2];
233 dualVector_->zero();
234 sampler.sumAll(*g_,*dualVector_);
235 hv.axpy(sig/norm3 * (ev[2]*vstat[0] - ev[3]),*dualVector_);
236 }
237 }
238};
239
240}
241
242#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Contains definitions of custom data types in ROL.
Provides the interface to evaluate objective functions.
void clear(void)
void setHessVecStorage(const Ptr< ScalarController< Real > > &gradvec_storage, const Ptr< VectorController< Real > > &hessvec_storage)
Ptr< VectorController< Real > > hessvecs_
Ptr< VectorController< Real > > gradients_
Ptr< ScalarController< Real > > values_
Real computeDual(SampleGenerator< Real > &sampler)
void initializeStorage(void)
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
void initialize(const Vector< Real > &x)
Initialize temporary variables.
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
void checkInputs(void)
PD_HMCR2(const Real beta)
void setStorage(const Ptr< ScalarController< Real > > &value_storage, const Ptr< VectorController< Real > > &gradient_storage)
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
Ptr< ScalarController< Real > > gradvecs_
void getMultiplier(Real &lam, const std::vector< Real > &pt) const
void setMultiplier(Real &lam, const std::vector< Real > &pt)
virtual void setHessVecStorage(const Ptr< ScalarController< Real > > &gradvec_storage, const Ptr< VectorController< Real > > &hessvec_storage)
void setValue(const Real val, const std::vector< Real > &pt)
virtual void initialize(const Vector< Real > &x)
Initialize temporary variables.
virtual void setStorage(const Ptr< ScalarController< Real > > &value_storage, const Ptr< VectorController< Real > > &gradient_storage)
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
virtual void setStorage(const Ptr< ScalarController< Real > > &value_storage, const Ptr< VectorController< Real > > &gradient_storage)
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > dualVector_
virtual void setHessVecStorage(const Ptr< ScalarController< Real > > &gradvec_storage, const Ptr< VectorController< Real > > &hessvec_storage)
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
virtual int numMySamples(void) const
virtual std::vector< Real > getMyPoint(const int i) const
void sumAll(Real *input, Real *output, int dim) const
virtual Real getMyWeight(const int i) const
Defines the linear algebra or vector space interface.
virtual void scale(const Real alpha)=0
Compute where .
virtual void axpy(const Real alpha, const Vector &x)
Compute where .