ROL
ROL_MeanSemiDeviation.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_MEANSEMIDEVIATION_HPP
11#define ROL_MEANSEMIDEVIATION_HPP
12
14#include "ROL_PlusFunction.hpp"
15
34namespace ROL {
35
36template<class Real>
38private:
39 Ptr<PlusFunction<Real> > plusFunction_;
40 Real coeff_;
41
42 Ptr<ScalarController<Real>> values_;
43 Ptr<ScalarController<Real>> gradvecs_;
44 Ptr<VectorController<Real>> gradients_;
45 Ptr<VectorController<Real>> hessvecs_;
46
47 using RandVarFunctional<Real>::val_;
48 using RandVarFunctional<Real>::gv_;
49 using RandVarFunctional<Real>::g_;
50 using RandVarFunctional<Real>::hv_;
52
53 using RandVarFunctional<Real>::point_;
55
60
61 void initializeStorage(void) {
62 values_ = makePtr<ScalarController<Real>>();
63 gradvecs_ = makePtr<ScalarController<Real>>();
64 gradients_ = makePtr<VectorController<Real>>();
65 hessvecs_ = makePtr<VectorController<Real>>();
66
69 }
70
71 void clear(void) {
72 gradvecs_->reset();
73 hessvecs_->reset();
74 }
75
76 void checkInputs(void) {
77 const Real zero(0);
78 ROL_TEST_FOR_EXCEPTION((coeff_ < zero), std::invalid_argument,
79 ">>> ERROR (ROL::MeanSemiDeviation): Coefficient must be positive!");
80 ROL_TEST_FOR_EXCEPTION(plusFunction_ == nullPtr, std::invalid_argument,
81 ">>> ERROR (ROL::MeanSemiDeviation): PlusFunction pointer is null!");
83 }
84
85public:
86
92 MeanSemiDeviation( const Real coeff, const Ptr<PlusFunction<Real> > &pf )
93 : RandVarFunctional<Real>(), plusFunction_(pf), coeff_(coeff) {
95 }
96
106 MeanSemiDeviation( ROL::ParameterList &parlist )
107 : RandVarFunctional<Real>() {
108 ROL::ParameterList &list
109 = parlist.sublist("SOL").sublist("Risk Measure").sublist("Mean Plus Semi-Deviation");
110 // Check CVaR inputs
111 coeff_ = list.get<Real>("Coefficient");
112 // Build (approximate) plus function
113 plusFunction_ = makePtr<PlusFunction<Real>>(list);
114 // Check Inputs
115 checkInputs();
116 }
117
118 void setStorage(const Ptr<ScalarController<Real>> &value_storage,
119 const Ptr<VectorController<Real>> &gradient_storage) {
120 values_ = value_storage;
121 gradients_ = gradient_storage;
123 }
124
125 void setHessVecStorage(const Ptr<ScalarController<Real>> &gradvec_storage,
126 const Ptr<VectorController<Real>> &hessvec_storage) {
127 gradvecs_ = gradvec_storage;
128 hessvecs_ = hessvec_storage;
130 }
131
136
138 const Vector<Real> &x,
139 const std::vector<Real> &xstat,
140 Real &tol) {
141 Real val = computeValue(obj,x,tol);
142 val_ += weight_ * val;
143 }
144
145 Real getValue(const Vector<Real> &x,
146 const std::vector<Real> &xstat,
147 SampleGenerator<Real> &sampler) {
148 // Compute expected value
149 Real ev(0);
150 sampler.sumAll(&val_,&ev,1);
151 // Compute deviation
152 Real diff(0), pf(0), dev(0), weight(0);
153 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
154 values_->get(diff,sampler.getMyPoint(i));
155 weight = sampler.getMyWeight(i);
156 diff -= ev;
157 pf += weight * plusFunction_->evaluate(diff,0);
158 }
159 sampler.sumAll(&pf,&dev,1);
160 // Return mean plus deviation
161 return ev + coeff_ * dev;
162 }
163
165 const Vector<Real> &x,
166 const std::vector<Real> &xstat,
167 Real &tol) {
168 Real val = computeValue(obj,x,tol);
169 val_ += weight_ * val;
170 computeGradient(*dualVector_,obj,x,tol);
171 }
172
174 std::vector<Real> &gstat,
175 const Vector<Real> &x,
176 const std::vector<Real> &xstat,
177 SampleGenerator<Real> &sampler) {
178 // Compute expected value
179 Real ev(0);
180 sampler.sumAll(&val_,&ev,1);
181 // Compute deviation
182 Real diff(0), dev(0), pf (0), c(0), one(1), weight(0);
183 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
184 values_->get(diff,sampler.getMyPoint(i));
185 weight = sampler.getMyWeight(i);
186 diff -= ev;
187 pf += weight * plusFunction_->evaluate(diff,1);
188 }
189 sampler.sumAll(&pf,&dev,1);
190 // Compute derivative
191 g_->zero(); dualVector_->zero();
192 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
193 values_->get(diff,sampler.getMyPoint(i));
194 weight = sampler.getMyWeight(i);
195 diff -= ev;
196 pf = plusFunction_->evaluate(diff,1);
197 c = one + coeff_ * (pf - dev);
198 gradients_->get(*dualVector_, sampler.getMyPoint(i));
199 g_->axpy(weight * c, *dualVector_);
200 }
201 sampler.sumAll(*g_, g);
202 }
203
205 const Vector<Real> &v,
206 const std::vector<Real> &vstat,
207 const Vector<Real> &x,
208 const std::vector<Real> &xstat,
209 Real &tol) {
210 Real val = computeValue(obj,x,tol);
211 val_ += weight_ * val;
212 Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
213 gv_ += weight_ * gv;
214 computeHessVec(*dualVector_,obj,v,x,tol);
215 }
216
218 std::vector<Real> &hvstat,
219 const Vector<Real> &v,
220 const std::vector<Real> &vstat,
221 const Vector<Real> &x,
222 const std::vector<Real> &xstat,
223 SampleGenerator<Real> &sampler) {
224 const Real one(1);
225 // Compute expected value
226 std::vector<Real> mval = {val_, gv_};
227 std::vector<Real> gval(2,0);
228 sampler.sumAll(&mval[0],&gval[0],2);
229 Real ev = gval[0], egv = gval[1];
230 // Compute deviation
231 Real diff(0), pf1(0), pf2(0), weight(0), gv(0), c(0);
232 std::vector<Real> pf(2,0), dev(2,0);
233 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
234 values_->get(diff, sampler.getMyPoint(i));
235 gradvecs_->get(gv, sampler.getMyPoint(i));
236 weight = sampler.getMyWeight(i);
237 diff -= ev;
238 pf[0] += weight * plusFunction_->evaluate(diff,1);
239 pf[1] += weight * plusFunction_->evaluate(diff,2) * (gv - egv);
240 }
241 sampler.sumAll(&pf[0],&dev[0],2);
242 hv_->zero(); dualVector_->zero();
243 for (int i = sampler.start(); i < sampler.numMySamples(); ++i) {
244 values_->get(diff, sampler.getMyPoint(i));
245 gradvecs_->get(gv, sampler.getMyPoint(i));
246 weight = sampler.getMyWeight(i);
247 diff -= ev;
248 pf1 = plusFunction_->evaluate(diff,1);
249 c = one + coeff_ * (pf1 - dev[0]);
250 hessvecs_->get(*dualVector_, sampler.getMyPoint(i));
251 hv_->axpy(weight * c, *dualVector_);
252 pf2 = plusFunction_->evaluate(diff,2) * (gv - egv);
253 c = coeff_ * (pf2 - dev[1]);
254 gradients_->get(*dualVector_, sampler.getMyPoint(i));
255 hv_->axpy(weight * c, *dualVector_);
256 }
257 sampler.sumAll(*hv_, hv);
258 }
259};
260
261}
262
263#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Provides an interface for the mean plus upper semideviation of order 1.
MeanSemiDeviation(const Real coeff, const Ptr< PlusFunction< Real > > &pf)
Constructor.
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
void setHessVecStorage(const Ptr< ScalarController< Real > > &gradvec_storage, const Ptr< VectorController< Real > > &hessvec_storage)
Ptr< VectorController< Real > > hessvecs_
Ptr< ScalarController< Real > > gradvecs_
void initialize(const Vector< Real > &x)
Initialize temporary variables.
void setStorage(const Ptr< ScalarController< Real > > &value_storage, const Ptr< VectorController< Real > > &gradient_storage)
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Ptr< PlusFunction< Real > > plusFunction_
Ptr< VectorController< Real > > gradients_
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
MeanSemiDeviation(ROL::ParameterList &parlist)
Constructor.
Ptr< ScalarController< Real > > values_
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
Provides the interface to evaluate objective functions.
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
virtual void initialize(const Vector< Real > &x)
Initialize temporary variables.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
virtual void setStorage(const Ptr< ScalarController< Real > > &value_storage, const Ptr< VectorController< Real > > &gradient_storage)
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > dualVector_
virtual void setHessVecStorage(const Ptr< ScalarController< Real > > &gradvec_storage, const Ptr< VectorController< Real > > &hessvec_storage)
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
virtual int numMySamples(void) const
virtual std::vector< Real > getMyPoint(const int i) const
void sumAll(Real *input, Real *output, int dim) const
virtual Real getMyWeight(const int i) const
Defines the linear algebra or vector space interface.