ROL
ROL_MeanSemiDeviationFromTarget.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_MEANSEMIDEVIATIONFROMTARGET_HPP
11#define ROL_MEANSEMIDEVIATIONFROMTARGET_HPP
12
14#include "ROL_PlusFunction.hpp"
15
34namespace ROL {
35
36template<class Real>
38private:
39 Ptr<PlusFunction<Real> > plusFunction_;
41
42 using RandVarFunctional<Real>::val_;
43 using RandVarFunctional<Real>::gv_;
44 using RandVarFunctional<Real>::g_;
45 using RandVarFunctional<Real>::hv_;
47
48 using RandVarFunctional<Real>::point_;
50
55
56 void checkInputs(void) const {
57 const Real zero(0);
58 ROL_TEST_FOR_EXCEPTION((coeff_ < zero), std::invalid_argument,
59 ">>> ERROR (ROL::MeanPlusSemiDeviationFromTarget): Coefficient must be positive!");
60 ROL_TEST_FOR_EXCEPTION(plusFunction_ == nullPtr, std::invalid_argument,
61 ">>> ERROR (ROL::MeanSemiDeviation): PlusFunction pointer is null!");
62 }
63
64public:
65
72 MeanSemiDeviationFromTarget( const Real coeff, const Real target,
73 const Ptr<PlusFunction<Real>> &pf )
74 : RandVarFunctional<Real>(), plusFunction_(pf), coeff_(coeff), target_(target) {
76 }
77
88 MeanSemiDeviationFromTarget( ROL::ParameterList &parlist )
89 : RandVarFunctional<Real>() {
90 ROL::ParameterList &list
91 = parlist.sublist("SOL").sublist("Risk Measure").sublist("Mean Plus Semi-Deviation From Target");
92 // Check inputs
93 coeff_ = list.get<Real>("Coefficient");
94 target_ = list.get<Real>("Target");
95 // Build (approximate) plus function
96 plusFunction_ = makePtr<PlusFunction<Real>>(list);
97 // Check Inputs
99 }
100
102 const Vector<Real> &x,
103 const std::vector<Real> &xstat,
104 Real &tol) {
105 Real val = computeValue(obj,x,tol);
106 Real pf = plusFunction_->evaluate(val-target_,0);
107 val_ += weight_ * (val + coeff_ * pf);
108 }
109
110 Real getValue(const Vector<Real> &x,
111 const std::vector<Real> &xstat,
112 SampleGenerator<Real> &sampler) {
113 Real ev(0);
114 sampler.sumAll(&val_,&ev,1);
115 return ev;
116 }
117
119 const Vector<Real> &x,
120 const std::vector<Real> &xstat,
121 Real &tol) {
122 const Real one(1);
123 Real val = computeValue(obj,x,tol);
124 Real pf = plusFunction_->evaluate(val-target_,1);
125 computeGradient(*dualVector_,obj,x,tol);
126 g_->axpy(weight_ * (one + coeff_ * pf), *dualVector_);
127 }
128
130 std::vector<Real> &gstat,
131 const Vector<Real> &x,
132 const std::vector<Real> &xstat,
133 SampleGenerator<Real> &sampler) {
134 sampler.sumAll(*g_, g);
135 }
136
138 const Vector<Real> &v,
139 const std::vector<Real> &vstat,
140 const Vector<Real> &x,
141 const std::vector<Real> &xstat,
142 Real &tol) {
143 const Real one(1);
144 Real val = computeValue(obj,x,tol);
145 Real pf1 = plusFunction_->evaluate(val-target_,1);
146 Real pf2 = plusFunction_->evaluate(val-target_,2);
147 Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
148 hv_->axpy(weight_ * coeff_ * pf2 * gv, *dualVector_);
149 computeHessVec(*dualVector_,obj,v,x,tol);
150 hv_->axpy(weight_ * (one + coeff_ * pf1), *dualVector_);
151 }
152
154 std::vector<Real> &hvstat,
155 const Vector<Real> &v,
156 const std::vector<Real> &vstat,
157 const Vector<Real> &x,
158 const std::vector<Real> &xstat,
159 SampleGenerator<Real> &sampler) {
160 sampler.sumAll(*hv_, hv);
161 }
162};
163
164}
165
166#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
MeanSemiDeviationFromTarget(const Real coeff, const Real target, const Ptr< PlusFunction< Real > > &pf)
Constructor.
MeanSemiDeviationFromTarget(ROL::ParameterList &parlist)
Constructor.
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Provides the interface to evaluate objective functions.
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > dualVector_
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
void sumAll(Real *input, Real *output, int dim) const
Defines the linear algebra or vector space interface.