ROL
ROL_LowerBoundToConstraint.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_LOWER_BOUND_TO_CONSTRAINT_H
11#define ROL_LOWER_BOUND_TO_CONSTRAINT_H
12
14#include "ROL_Constraint.hpp"
15
21namespace ROL {
22
23template<typename Real>
24class LowerBoundToConstraint : public Constraint<Real> {
25private:
26 Ptr<Vector<Real>> lo_;
27
28public:
31
32 void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) override;
33 void applyJacobian(Vector<Real> &jv, const Vector<Real> &v, const Vector<Real> &x, Real &tol) override;
34 void applyAdjointJacobian(Vector<Real> &ajv, const Vector<Real> &v, const Vector<Real> &x, Real &tol) override;
35 void applyAdjointHessian(Vector<Real> &ahuv, const Vector<Real> &u, const Vector<Real> &v,
36 const Vector<Real> &x, Real &tol) override;
37};
38
39}
40
42
43#endif
Provides the interface to apply upper and lower bound constraints.
Defines the general constraint operator interface.
Provides an implementation for lower bound constraints.
void value(Vector< Real > &c, const Vector< Real > &x, Real &tol) override
Evaluate the constraint operator at .
void applyJacobian(Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
Apply the constraint Jacobian at , , to vector .
void applyAdjointJacobian(Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
Apply the adjoint of the the constraint Jacobian at , , to vector .
void applyAdjointHessian(Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
Apply the derivative of the adjoint of the constraint Jacobian at to vector in direction ,...
Defines the linear algebra or vector space interface.