ROL
ROL_LinearCombinationObjective.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_LINEARCOMBINATIONOBJECTIVE_H
11#define ROL_LINEARCOMBINATIONOBJECTIVE_H
12
13#include "ROL_Objective.hpp"
14#include "ROL_Ptr.hpp"
15
16namespace ROL {
17
18template<typename Real>
20private:
21 const std::vector<Ptr<Objective<Real>>> obj_;
22 std::vector<Real> weights_;
23 size_t size_;
24
25 Ptr<Vector<Real>> xdual_;
27
28public:
29 LinearCombinationObjective(const std::vector<Ptr<Objective<Real>>> &obj);
30 LinearCombinationObjective(const std::vector<Real> &weights,
31 const std::vector<Ptr<Objective<Real>>> &obj);
32
33 void update(const Vector<Real> &x, UpdateType type, int iter = -1) override;
34 void update(const Vector<Real> &x, bool flag = true, int iter = -1) override;
35 Real value( const Vector<Real> &x, Real &tol ) override;
36 void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) override;
37 void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) override;
38 void setParameter(const std::vector<Real> &param) override;
39
40}; // class LinearCombinationObjective
41
42} // namespace ROL
43
45
46#endif
void setParameter(const std::vector< Real > &param) override
const std::vector< Ptr< Objective< Real > > > obj_
Real value(const Vector< Real > &x, Real &tol) override
Compute value.
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol) override
Compute gradient.
void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
Apply Hessian approximation to vector.
void update(const Vector< Real > &x, UpdateType type, int iter=-1) override
Update objective function.
Provides the interface to evaluate objective functions.
Defines the linear algebra or vector space interface.