ROL
ROL_Gaussian.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_GAUSSIAN_HPP
11#define ROL_GAUSSIAN_HPP
12
13#include "ROL_Distribution.hpp"
14#include "ROL_ParameterList.hpp"
15
16namespace ROL {
17
18template<class Real>
19class Gaussian : public Distribution<Real> {
20private:
21 Real mean_;
23
24 std::vector<Real> a_;
25 std::vector<Real> b_;
26 std::vector<Real> c_;
27 std::vector<Real> d_;
28
29 Real erfi(const Real p) const {
30 const Real zero(0), half(0.5), one(1), two(2), pi(ROL::ScalarTraits<Real>::pi());
31 Real val(0), z(0);
32 if ( std::abs(p) > static_cast<Real>(0.7) ) {
33 Real sgn = (p < zero) ? -one : one;
34 z = std::sqrt(-std::log((one-sgn*p)*half));
35 val = sgn*(((c_[3]*z+c_[2])*z+c_[1])*z + c_[0])/((d_[1]*z+d_[0])*z + one);
36 }
37 else {
38 z = p*p;
39 val = p*(((a_[3]*z+a_[2])*z+a_[1])*z + a_[0])/((((b_[3]*z+b_[2])*z+b_[1])*z+b_[0])*z+one);
40 }
41 val -= (erf(val)-p)/(two/std::sqrt(pi) * std::exp(-val*val));
42 val -= (erf(val)-p)/(two/std::sqrt(pi) * std::exp(-val*val));
43 return val;
44 }
45
46public:
47
48 Gaussian(const Real mean = 0., const Real variance = 1.)
49 : mean_(mean), variance_((variance>0.) ? variance : 1.) {
50 a_.clear(); a_.resize(4,0.); b_.clear(); b_.resize(4,0.);
51 c_.clear(); c_.resize(4,0.); d_.clear(); d_.resize(2,0.);
52 a_[0] = 0.886226899; a_[1] = -1.645349621; a_[2] = 0.914624893; a_[3] = -0.140543331;
53 b_[0] = -2.118377725; b_[1] = 1.442710462; b_[2] = -0.329097515; b_[3] = 0.012229801;
54 c_[0] = -1.970840454; c_[1] = -1.624906493; c_[2] = 3.429567803; c_[3] = 1.641345311;
55 d_[0] = 3.543889200; d_[1] = 1.637067800;
56 }
57
58 Gaussian(ROL::ParameterList &parlist) {
59 mean_ = parlist.sublist("SOL").sublist("Distribution").sublist("Gaussian").get("Mean",0.);
60 variance_ = parlist.sublist("SOL").sublist("Distribution").sublist("Gaussian").get("Variance",1.);
61 variance_ = (variance_ > 0.) ? variance_ : 1.;
62 a_.clear(); a_.resize(4,0.); b_.clear(); b_.resize(4,0.);
63 c_.clear(); c_.resize(4,0.); d_.clear(); d_.resize(2,0.);
64 a_[0] = 0.886226899; a_[1] = -1.645349621; a_[2] = 0.914624893; a_[3] = -0.140543331;
65 b_[0] = -2.118377725; b_[1] = 1.442710462; b_[2] = -0.329097515; b_[3] = 0.012229801;
66 c_[0] = -1.970840454; c_[1] = -1.624906493; c_[2] = 3.429567803; c_[3] = 1.641345311;
67 d_[0] = 3.543889200; d_[1] = 1.637067800;
68 }
69
70 Real evaluatePDF(const Real input) const {
71 return std::exp(-std::pow(input-mean_,2)/(2.*variance_))/(std::sqrt(2.*ROL::ScalarTraits<Real>::pi()*variance_));
72 }
73
74 Real evaluateCDF(const Real input) const {
75 const Real half(0.5), one(1), two(2);
76 return half*(one+erf((input-mean_)/std::sqrt(two*variance_)));
77 }
78
79 Real integrateCDF(const Real input) const {
80 ROL_TEST_FOR_EXCEPTION( true, std::invalid_argument,
81 ">>> ERROR (ROL::Gaussian): Gaussian integrateCDF not implemented!");
82 }
83
84 Real invertCDF(const Real input) const {
85 //return std::sqrt(2.*variance_)*erfi(2.*input-1.) + mean_;
86 const Real zero(0), half(0.5), one(1), eight(8);
87 const Real dev(std::sqrt(variance_)), eps(1.24419211485e-15);
88 // Set lower and upper bounds to the mean plus/minus 8 standard
89 // -- deviations this ensures that 1-eps probability mass is
90 // -- covered by the interval.
91 const Real lVal = mean_ - eight*dev;
92 const Real uVal = mean_ + eight*dev;
93 // If the input is outside of the interval (half*eps,1-half*eps)
94 // -- then set the return value to be either the lower or
95 // -- upper bound. This case can occur with probability eps.
96 if ( input <= half*eps ) { return lVal; }
97 if ( input >= one-half*eps ) { return uVal; }
98 // Determine maximum number of iterations.
99 // -- maxit is set to the number of iterations required to
100 // -- ensure that |b-a| < eps after maxit iterations.
101 size_t maxit = static_cast<size_t>(one-std::log2(eps/(eight*dev)));
102 maxit = (maxit < 1 ? 100 : maxit);
103 // Run bisection to solve CDF(x) = input.
104 Real a = (input < half ? lVal : mean_);
105 Real b = (input < half ? mean_ : uVal );
106 Real c = half*(a+b);
107 Real fa = evaluateCDF(a) - input;
108 Real fc = evaluateCDF(c) - input;
109 Real sa = ((fa < zero) ? -one : ((fa > zero) ? one : zero));
110 Real sc = ((fc < zero) ? -one : ((fc > zero) ? one : zero));
111 for (size_t i = 0; i < maxit; ++i) {
112 if ( std::abs(fc) < eps || (b-a)*half < eps ) {
113 break;
114 }
115 if ( sc == sa ) { a = c; fa = fc; sa = sc; }
116 else { b = c; }
117 // Compute interval midpoint.
118 c = (a+b)*half;
119 fc = evaluateCDF(c) - input;
120 sc = ((fc < zero) ? -one : ((fc > zero) ? one : zero));
121 }
122 return c;
123 }
124
125 Real moment(const size_t m) const {
126 Real val = 0.;
127 switch(m) {
128 case 1: val = mean_; break;
129 case 2: val = std::pow(mean_,2) + variance_; break;
130 case 3: val = std::pow(mean_,3)
131 + 3.*mean_*variance_; break;
132 case 4: val = std::pow(mean_,4)
133 + 6.*std::pow(mean_,2)*variance_
134 + 3.*std::pow(variance_,2); break;
135 case 5: val = std::pow(mean_,5)
136 + 10.*std::pow(mean_,3)*variance_
137 + 15.*mean_*std::pow(variance_,2); break;
138 case 6: val = std::pow(mean_,6)
139 + 15.*std::pow(mean_,4)*variance_
140 + 45.*std::pow(mean_*variance_,2)
141 + 15.*std::pow(variance_,3); break;
142 case 7: val = std::pow(mean_,7)
143 + 21.*std::pow(mean_,5)*variance_
144 + 105.*std::pow(mean_,3)*std::pow(variance_,2)
145 + 105.*mean_*std::pow(variance_,3); break;
146 case 8: val = std::pow(mean_,8)
147 + 28.*std::pow(mean_,6)*variance_
148 + 210.*std::pow(mean_,4)*std::pow(variance_,2)
149 + 420.*std::pow(mean_,2)*std::pow(variance_,3)
150 + 105.*std::pow(variance_,4); break;
151 default:
152 ROL_TEST_FOR_EXCEPTION( true, std::invalid_argument,
153 ">>> ERROR (ROL::Distribution): Gaussian moment not implemented for m > 8!");
154 }
155 return val;
156 }
157
158 Real lowerBound(void) const {
159 return ROL_NINF<Real>();
160 }
161
162 Real upperBound(void) const {
163 return ROL_INF<Real>();
164 }
165
166 void test(std::ostream &outStream = std::cout ) const {
167 size_t size = 1;
168 std::vector<Real> X(size,4.*(Real)rand()/(Real)RAND_MAX - 2.);
169 std::vector<int> T(size,0);
170 Distribution<Real>::test(X,T,outStream);
171 }
172};
173
174}
175
176#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
virtual void test(std::ostream &outStream=std::cout) const
Real invertCDF(const Real input) const
Real lowerBound(void) const
Real erfi(const Real p) const
Real evaluateCDF(const Real input) const
std::vector< Real > a_
Gaussian(const Real mean=0., const Real variance=1.)
Gaussian(ROL::ParameterList &parlist)
Real integrateCDF(const Real input) const
Real upperBound(void) const
std::vector< Real > c_
std::vector< Real > b_
void test(std::ostream &outStream=std::cout) const
Real evaluatePDF(const Real input) const
std::vector< Real > d_
Real moment(const size_t m) const