ROL
ROL_DogLeg_U.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_DOGLEG_U_H
11#define ROL_DOGLEG_U_H
12
17#include "ROL_TrustRegion_U.hpp"
18#include "ROL_Types.hpp"
19
20namespace ROL {
21
22template<class Real>
23class DogLeg_U : public TrustRegion_U<Real> {
24private:
25
26 Ptr<Vector<Real>> primal_, dual_;
27
28public:
29
30 // Constructor
32
33 void initialize(const Vector<Real> &x, const Vector<Real> &g) {
34 primal_ = x.clone();
35 dual_ = g.clone();
36 }
37
39 Real &snorm,
40 Real &pRed,
41 int &iflag,
42 int &iter,
43 const Real del,
45 Real tol = std::sqrt(ROL_EPSILON<Real>());
46 const Real zero(0), half(0.5), one(1), two(2);
47 iter = 0;
48 // Set s to be the gradient
49 s.set(model.getGradient()->dual());
50 // Compute (quasi-)Newton step
51 model.invHessVec(*primal_,*model.getGradient(),s,tol);
52 Real sNnorm = primal_->norm();
53 Real gsN = -primal_->dot(s);
54 // Check if (quasi-)Newton step is feasible
55 if ( gsN >= zero ) {
56 // Use the Cauchy point
57 model.hessVec(*dual_,s,s,tol);
58 Real gnorm = s.norm();
59 Real gnorm2 = gnorm*gnorm;
60 //Real gBg = dual_->dot(s.dual());
61 Real gBg = dual_->apply(s);
62 Real alpha = gnorm2/gBg;
63 if ( alpha*gnorm >= del || gBg <= zero ) {
64 alpha = del/gnorm;
65 }
66 s.scale(-alpha);
67 snorm = alpha*gnorm;
68 iflag = 2;
69 pRed = alpha*(gnorm2 - half*alpha*gBg);
70 }
71 else {
72 // Approximately solve trust region subproblem using double dogleg curve
73 if (sNnorm <= del) { // Use the (quasi-)Newton step
74 s.set(*primal_);
75 s.scale(-one);
76 snorm = sNnorm;
77 pRed = -half*gsN;
78 iflag = 0;
79 }
80 else { // The (quasi-)Newton step is outside of trust region
81 model.hessVec(*dual_,s,s,tol);
82 Real alpha = zero;
83 Real beta = zero;
84 Real gnorm = s.norm();
85 Real gnorm2 = gnorm*gnorm;
86 //Real gBg = dual_->dot(s.dual());
87 Real gBg = dual_->apply(s);
88 Real gamma = gnorm2/gBg;
89 if ( gamma*gnorm >= del || gBg <= zero ) {
90 // Use Cauchy point
91 alpha = zero;
92 beta = del/gnorm;
93 s.scale(-beta);
94 snorm = del;
95 iflag = 2;
96 }
97 else {
98 // Use a convex combination of Cauchy point and (quasi-)Newton step
99 Real a = sNnorm*sNnorm + two*gamma*gsN + gamma*gamma*gnorm2;
100 Real b = -gamma*gsN - gamma*gamma*gnorm2;
101 Real c = gamma*gamma*gnorm2 - del*del;
102 alpha = (-b + std::sqrt(b*b - a*c))/a;
103 beta = gamma*(one-alpha);
104 s.scale(-beta);
105 s.axpy(-alpha,*primal_);
106 snorm = del;
107 iflag = 1;
108 }
109 pRed = (alpha*(half*alpha-one)*gsN - half*beta*beta*gBg + beta*(one-alpha)*gnorm2);
110 }
111 }
112 }
113};
114
115} // namespace ROL
116
117#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Contains definitions of custom data types in ROL.
Provides interface for dog leg trust-region subproblem solver.
Ptr< Vector< Real > > primal_
void initialize(const Vector< Real > &x, const Vector< Real > &g)
void solve(Vector< Real > &s, Real &snorm, Real &pRed, int &iflag, int &iter, const Real del, TrustRegionModel_U< Real > &model)
Ptr< Vector< Real > > dual_
Provides the interface to evaluate trust-region model functions.
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &s, Real &tol) override
Apply Hessian approximation to vector.
virtual void invHessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &s, Real &tol) override
Apply inverse Hessian approximation to vector.
virtual const Ptr< const Vector< Real > > getGradient(void) const
Provides interface for and implements trust-region subproblem solvers.
Defines the linear algebra or vector space interface.
virtual Real norm() const =0
Returns where .
virtual void set(const Vector &x)
Set where .
virtual void scale(const Real alpha)=0
Compute where .
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .