ROL
ROL_BPOE.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Rapid Optimization Library (ROL) Package
4//
5// Copyright 2014 NTESS and the ROL contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef ROL_BPOE_HPP
11#define ROL_BPOE_HPP
12
14
29namespace ROL {
30
31template<class Real>
32class BPOE : public RandVarFunctional<Real> {
33private:
35 Real order_;
36
37 std::vector<Real> hvec_;
38 ROL::Ptr<Vector<Real> > dualVec1_, dualVec2_;
39
41
42 using RandVarFunctional<Real>::val_;
43 using RandVarFunctional<Real>::gv_;
44 using RandVarFunctional<Real>::g_;
45 using RandVarFunctional<Real>::hv_;
47
48 using RandVarFunctional<Real>::point_;
50
55
56public:
57 BPOE(const Real threshold, const Real order=1)
58 : RandVarFunctional<Real>(), threshold_(threshold), order_(order), firstResetBPOE_(true) {
59 hvec_.resize(5);
60 }
61
62 BPOE(ROL::ParameterList &parlist) : RandVarFunctional<Real>(), firstResetBPOE_(true) {
63 ROL::ParameterList &list = parlist.sublist("SOL").sublist("Probability").sublist("bPOE");
64 threshold_ = list.get<Real>("Threshold");
65 order_ = list.get<Real>("Moment Order");
66 hvec_.resize(5);
67 }
68
69 void initialize(const Vector<Real> &x) {
71 if ( firstResetBPOE_ ) {
72 dualVec1_ = x.dual().clone();
73 dualVec2_ = x.dual().clone();
74 firstResetBPOE_ = false;
75 }
76 dualVec1_->zero();
77 dualVec2_->zero();
78 hvec_.assign(5,0);
79 }
80
82 const Vector<Real> &x,
83 const std::vector<Real> &xstat,
84 Real &tol) {
85 const Real zero(0), one(1);
86 Real val = computeValue(obj,x,tol);
87 Real bp = xstat[0]*(val-threshold_)+one;
88 if ( bp > zero ) {
89 val_ += weight_*((order_==one) ? bp : std::pow(bp,order_));
90 }
91 }
92
93 Real getValue(const Vector<Real> &x,
94 const std::vector<Real> &xstat,
95 SampleGenerator<Real> &sampler) {
96 const Real one(1);
97 Real bpoe(0);
98 sampler.sumAll(&val_,&bpoe,1);
99 return ((order_==one) ? bpoe : std::pow(bpoe,one/order_));
100 }
101
103 const Vector<Real> &x,
104 const std::vector<Real> &xstat,
105 Real &tol) {
106 const Real zero(0), one(1), two(2);
107 Real val = computeValue(obj,x,tol);
108 Real bp = xstat[0]*(val-threshold_)+one;
109 if ( bp > zero ) {
110 computeGradient(*dualVector_,obj,x,tol);
111 Real pvalp0 = ((order_==one) ? bp : std::pow(bp,order_));
112 Real pvalp1 = ((order_==one) ? one : ((order_==two) ? bp : std::pow(bp,order_-one)));
113 val_ += weight_ * pvalp0;
114 gv_ += weight_ * pvalp1 * (val - threshold_);
115 g_->axpy(weight_ * pvalp1, *dualVector_);
116 }
117 }
118
120 std::vector<Real> &gstat,
121 const Vector<Real> &x,
122 const std::vector<Real> &xstat,
123 SampleGenerator<Real> &sampler) {
124 const Real zero(0), one(1);
125 std::vector<Real> myvals(2), gvals(2);
126 myvals[0] = val_; myvals[1] = gv_;
127 sampler.sumAll(&myvals[0],&gvals[0],2);
128 if ( gvals[0] > zero) {
129 sampler.sumAll(*g_,g);
130 Real norm = std::pow(gvals[0],(order_-one)/order_);
131 g.scale(xstat[0]/norm);
132 gstat[0] = gvals[1]/norm;
133 }
134 else {
135 g.zero();
136 gstat[0] = zero;
137 }
138 }
139
141 const Vector<Real> &v,
142 const std::vector<Real> &vstat,
143 const Vector<Real> &x,
144 const std::vector<Real> &xstat,
145 Real &tol) {
146 const Real zero(0), one(1), two(2), three(3);
147 Real val = computeValue(obj,x,tol);
148 Real bp = xstat[0]*(val-threshold_)+one;
149 if ( bp > zero ) {
150 // Gradient only
151 Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
152 Real pvalp0 = ((order_==one) ? bp : std::pow(bp,order_));
153 Real pvalp1 = ((order_==one) ? one
154 : ((order_==two) ? bp : std::pow(bp,order_-one)));
155 Real pvalp2 = ((order_==one) ? zero
156 : ((order_==two) ? one
157 : ((order_==three) ? bp : std::pow(bp,order_-two))));
158 hvec_[0] += weight_ * pvalp0;
159 hvec_[1] += weight_ * pvalp1 * (val-threshold_);
160 hvec_[2] += weight_ * pvalp2 * (val-threshold_) * (val-threshold_);
161 hvec_[3] += weight_ * pvalp1 * gv;
162 hvec_[4] += weight_ * pvalp2 * (val-threshold_) * gv;
163 g_->axpy(weight_ * pvalp1, *dualVector_);
164 dualVec1_->axpy(weight_ * pvalp2 * (val-threshold_), *dualVector_);
165 dualVec2_->axpy(weight_ * pvalp2 * gv, *dualVector_);
166 // Hessian only
167 computeHessVec(*dualVector_,obj,v,x,tol);
168 hv_->axpy(weight_ * pvalp1, *dualVector_);
169 }
170 }
171
173 std::vector<Real> &hvstat,
174 const Vector<Real> &v,
175 const std::vector<Real> &vstat,
176 const Vector<Real> &x,
177 const std::vector<Real> &xstat,
178 SampleGenerator<Real> &sampler) {
179 const Real zero(0), one(1), two(2);
180 std::vector<Real> gvals(5);
181 sampler.sumAll(&hvec_[0],&gvals[0],5);
182
183 if ( gvals[0] > zero ) {
184 Real norm0 = ((order_==one) ? one
185 : ((order_==two) ? std::sqrt(gvals[0])
186 : std::pow(gvals[0],(order_-one)/order_)));
187 Real norm1 = ((order_==one) ? gvals[0]
188 : std::pow(gvals[0],(two*order_-one)/order_));
189 hvstat[0] = (order_-one)*((gvals[2]/norm0 - gvals[1]*gvals[1]/norm1)*vstat[0]
190 +xstat[0]*(gvals[4]/norm0 - gvals[3]*gvals[1]/norm1))
191 +(gvals[3]/norm0);
192
193 sampler.sumAll(*hv_,hv);
194 hv.scale(xstat[0]/norm0);
195
196 sampler.sumAll(*g_,*hv_);
197 Real coeff = -(order_-one)*xstat[0]*(xstat[0]*gvals[3]+vstat[0]*gvals[1])/norm1+vstat[0]/norm0;
198 hv.axpy(coeff,*hv_);
199
200 sampler.sumAll(*dualVec1_,*hv_);
201 hv.axpy((order_-one)*vstat[0]*xstat[0]/norm0,*hv_);
202
203 sampler.sumAll(*dualVec2_,*hv_);
204 hv.axpy((order_-one)*xstat[0]*xstat[0]/norm0,*hv_);
205 }
206 }
207};
208
209}
210
211#endif
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Provides the implementation of the buffered probability of exceedance.
Definition ROL_BPOE.hpp:32
ROL::Ptr< Vector< Real > > dualVec1_
Definition ROL_BPOE.hpp:38
std::vector< Real > hvec_
Definition ROL_BPOE.hpp:37
BPOE(ROL::ParameterList &parlist)
Definition ROL_BPOE.hpp:62
Real order_
Definition ROL_BPOE.hpp:35
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
Definition ROL_BPOE.hpp:140
bool firstResetBPOE_
Definition ROL_BPOE.hpp:40
BPOE(const Real threshold, const Real order=1)
Definition ROL_BPOE.hpp:57
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
Definition ROL_BPOE.hpp:81
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
Definition ROL_BPOE.hpp:172
Real threshold_
Definition ROL_BPOE.hpp:34
ROL::Ptr< Vector< Real > > dualVec2_
Definition ROL_BPOE.hpp:38
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Definition ROL_BPOE.hpp:119
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
Definition ROL_BPOE.hpp:93
void initialize(const Vector< Real > &x)
Initialize temporary variables.
Definition ROL_BPOE.hpp:69
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
Definition ROL_BPOE.hpp:102
Provides the interface to evaluate objective functions.
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
virtual void initialize(const Vector< Real > &x)
Initialize temporary variables.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > dualVector_
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
void sumAll(Real *input, Real *output, int dim) const
Defines the linear algebra or vector space interface.
virtual void scale(const Real alpha)=0
Compute where .
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis,...
virtual void zero()
Set to zero vector.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .