MueLu Version of the Day
Loading...
Searching...
No Matches
MueLu_RepartitionFactory_def.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// MueLu: A package for multigrid based preconditioning
4//
5// Copyright 2012 NTESS and the MueLu contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
10#ifndef MUELU_REPARTITIONFACTORY_DEF_HPP
11#define MUELU_REPARTITIONFACTORY_DEF_HPP
12
13#include <algorithm>
14#include <iostream>
15#include <sstream>
16
17#include "MueLu_RepartitionFactory_decl.hpp" // TMP JG NOTE: before other includes, otherwise I cannot test the fwd declaration in _def
18
19#ifdef HAVE_MPI
20#include <Teuchos_DefaultMpiComm.hpp>
21#include <Teuchos_CommHelpers.hpp>
22#include <Teuchos_Details_MpiTypeTraits.hpp>
23
24#include <Xpetra_Map.hpp>
25#include <Xpetra_MapFactory.hpp>
26#include <Xpetra_MultiVectorFactory.hpp>
27#include <Xpetra_VectorFactory.hpp>
28#include <Xpetra_Import.hpp>
29#include <Xpetra_ImportFactory.hpp>
30#include <Xpetra_Export.hpp>
31#include <Xpetra_ExportFactory.hpp>
32#include <Xpetra_Matrix.hpp>
33#include <Xpetra_MatrixFactory.hpp>
34
35#include "MueLu_Utilities.hpp"
36
37#include "MueLu_CloneRepartitionInterface.hpp"
38
39#include "MueLu_Level.hpp"
40#include "MueLu_MasterList.hpp"
41#include "MueLu_Monitor.hpp"
42#include "MueLu_PerfUtils.hpp"
43
44namespace MueLu {
45
46template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
48
49template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
51
52template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
54 RCP<ParameterList> validParamList = rcp(new ParameterList());
55
56#define SET_VALID_ENTRY(name) validParamList->setEntry(name, MasterList::getEntry(name))
57 SET_VALID_ENTRY("repartition: print partition distribution");
58 SET_VALID_ENTRY("repartition: remap parts");
59 SET_VALID_ENTRY("repartition: remap num values");
60 SET_VALID_ENTRY("repartition: remap accept partition");
61 SET_VALID_ENTRY("repartition: node repartition level");
62 SET_VALID_ENTRY("repartition: save importer");
63#undef SET_VALID_ENTRY
64
65 validParamList->set<RCP<const FactoryBase> >("A", Teuchos::null, "Factory of the matrix A");
66 validParamList->set<RCP<const FactoryBase> >("number of partitions", Teuchos::null, "Instance of RepartitionHeuristicFactory.");
67 validParamList->set<RCP<const FactoryBase> >("Partition", Teuchos::null, "Factory of the partition");
68
69 return validParamList;
70}
71
72template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
74 Input(currentLevel, "A");
75 Input(currentLevel, "number of partitions");
76 Input(currentLevel, "Partition");
77}
78
79template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
81 FactoryMonitor m(*this, "Build", currentLevel);
82
83 const Teuchos::ParameterList& pL = GetParameterList();
84 // Access parameters here to make sure that we set the parameter entry flag to "used" even in case of short-circuit evaluation.
85 // TODO (JG): I don't really know if we want to do this.
86 bool remapPartitions = pL.get<bool>("repartition: remap parts");
87
88 // TODO: We only need a CrsGraph. This class does not have to be templated on Scalar types.
89 RCP<Matrix> A = Get<RCP<Matrix> >(currentLevel, "A");
90 if (A == Teuchos::null) {
91 Set<RCP<const Import> >(currentLevel, "Importer", Teuchos::null);
92 return;
93 }
94 RCP<const Map> rowMap = A->getRowMap();
95 GO indexBase = rowMap->getIndexBase();
96 Xpetra::UnderlyingLib lib = rowMap->lib();
97
98 RCP<const Teuchos::Comm<int> > origComm = rowMap->getComm();
99 RCP<const Teuchos::Comm<int> > comm = origComm;
100
101 int myRank = comm->getRank();
102 int numProcs = comm->getSize();
103
104 RCP<const Teuchos::MpiComm<int> > tmpic = rcp_dynamic_cast<const Teuchos::MpiComm<int> >(comm);
105 TEUCHOS_TEST_FOR_EXCEPTION(tmpic == Teuchos::null, Exceptions::RuntimeError, "Cannot cast base Teuchos::Comm to Teuchos::MpiComm object.");
106 RCP<const Teuchos::OpaqueWrapper<MPI_Comm> > rawMpiComm = tmpic->getRawMpiComm();
107
109 int numPartitions = Get<int>(currentLevel, "number of partitions");
110
111 // ======================================================================================================
112 // Construct decomposition vector
113 // ======================================================================================================
114 RCP<GOVector> decomposition = Get<RCP<GOVector> >(currentLevel, "Partition");
115
116 // check which factory provides "Partition"
117 if (remapPartitions == true && Teuchos::rcp_dynamic_cast<const CloneRepartitionInterface>(GetFactory("Partition")) != Teuchos::null) {
118 // if "Partition" is provided by a CloneRepartitionInterface class we have to switch of remapPartitions
119 // as we can assume the processor Ids in Partition to be the expected ones. If we would do remapping we
120 // would get different processors for the different blocks which screws up matrix-matrix multiplication.
121 remapPartitions = false;
122 }
123
124 // check special cases
125 if (numPartitions == 1) {
126 // Trivial case: decomposition is the trivial one, all zeros. We skip the call to Zoltan_Interface
127 // (this is mostly done to avoid extra output messages, as even if we didn't skip there is a shortcut
128 // in Zoltan[12]Interface).
129 // TODO: We can probably skip more work in this case (like building all extra data structures)
130 GetOStream(Runtime0) << "Only one partition: Skip call to the repartitioner." << std::endl;
131 } else if (numPartitions == -1) {
132 // No repartitioning necessary: decomposition should be Teuchos::null
133 GetOStream(Runtime0) << "No repartitioning necessary: partitions were left unchanged by the repartitioner" << std::endl;
134 Set<RCP<const Import> >(currentLevel, "Importer", Teuchos::null);
135 return;
136 }
137
138 // If we're doing node away, we need to be sure to get the mapping to the NodeComm's rank 0.
139 const int nodeRepartLevel = pL.get<int>("repartition: node repartition level");
140 if (currentLevel.GetLevelID() == nodeRepartLevel) {
141 // NodePartitionInterface returns the *ranks* of the guy who gets the info, not the *partition number*
142 // In a sense, we've already done remap here.
143
144 // FIXME: We need a low-comm import construction
145 remapPartitions = false;
146 }
147
148 // ======================================================================================================
149 // Remap if necessary
150 // ======================================================================================================
151 // From a user perspective, we want user to not care about remapping, thinking of it as only a performance feature.
152 // There are two problems, however.
153 // (1) Next level aggregation depends on the order of GIDs in the vector, if one uses "natural" or "random" orderings.
154 // This also means that remapping affects next level aggregation, despite the fact that the _set_ of GIDs for
155 // each partition is the same.
156 // (2) Even with the fixed order of GIDs, the remapping may influence the aggregation for the next-next level.
157 // Let us consider the following example. Lets assume that when we don't do remapping, processor 0 would have
158 // GIDs {0,1,2}, and processor 1 GIDs {3,4,5}, and if we do remapping processor 0 would contain {3,4,5} and
159 // processor 1 {0,1,2}. Now, when we run repartitioning algorithm on the next level (say Zoltan1 RCB), it may
160 // be dependent on whether whether it is [{0,1,2}, {3,4,5}] or [{3,4,5}, {0,1,2}]. Specifically, the tie-breaking
161 // algorithm can resolve these differently. For instance, running
162 // mpirun -np 5 ./MueLu_ScalingTestParamList.exe --xml=easy_sa.xml --nx=12 --ny=12 --nz=12
163 // with
164 // <ParameterList name="MueLu">
165 // <Parameter name="coarse: max size" type="int" value="1"/>
166 // <Parameter name="repartition: enable" type="bool" value="true"/>
167 // <Parameter name="repartition: min rows per proc" type="int" value="2"/>
168 // <ParameterList name="level 1">
169 // <Parameter name="repartition: remap parts" type="bool" value="false/true"/>
170 // </ParameterList>
171 // </ParameterList>
172 // produces different repartitioning for level 2.
173 // This different repartitioning may then escalate into different aggregation for the next level.
174 //
175 // We fix (1) by fixing the order of GIDs in a vector by sorting the resulting vector.
176 // Fixing (2) is more complicated.
177 // FIXME: Fixing (2) in Zoltan may not be enough, as we may use some arbitration in MueLu,
178 // for instance with CoupledAggregation. What we really need to do is to use the same order of processors containing
179 // the same order of GIDs. To achieve that, the newly created subcommunicator must be conforming with the order. For
180 // instance, if we have [{0,1,2}, {3,4,5}], we create a subcommunicator where processor 0 gets rank 0, and processor 1
181 // gets rank 1. If, on the other hand, we have [{3,4,5}, {0,1,2}], we assign rank 1 to processor 0, and rank 0 to processor 1.
182 // This rank permutation requires help from Epetra/Tpetra, both of which have no such API in place.
183 // One should also be concerned that if we had such API in place, rank 0 in subcommunicator may no longer be rank 0 in
184 // MPI_COMM_WORLD, which may lead to issues for logging.
185 if (remapPartitions) {
186 SubFactoryMonitor m1(*this, "DeterminePartitionPlacement", currentLevel);
187
188 bool acceptPartition = pL.get<bool>("repartition: remap accept partition");
189 bool allSubdomainsAcceptPartitions;
190 int localNumAcceptPartition = acceptPartition;
191 int globalNumAcceptPartition;
192 MueLu_sumAll(comm, localNumAcceptPartition, globalNumAcceptPartition);
193 GetOStream(Statistics2) << "Number of ranks that accept partitions: " << globalNumAcceptPartition << std::endl;
194 if (globalNumAcceptPartition < numPartitions) {
195 GetOStream(Warnings0) << "Not enough ranks are willing to accept a partition, allowing partitions on all ranks." << std::endl;
196 acceptPartition = true;
197 allSubdomainsAcceptPartitions = true;
198 } else if (numPartitions > numProcs) {
199 // We are trying to repartition to a larger communicator.
200 allSubdomainsAcceptPartitions = true;
201 } else {
202 allSubdomainsAcceptPartitions = false;
203 }
204
205 DeterminePartitionPlacement(*A, *decomposition, numPartitions, acceptPartition, allSubdomainsAcceptPartitions);
206 }
207
208 // ======================================================================================================
209 // Construct importer
210 // ======================================================================================================
211 // At this point, the following is true:
212 // * Each processors owns 0 or 1 partitions
213 // * If a processor owns a partition, that partition number is equal to the processor rank
214 // * The decomposition vector contains the partitions ids that the corresponding GID belongs to
215
216 ArrayRCP<const GO> decompEntries;
217 if (decomposition->getLocalLength() > 0)
218 decompEntries = decomposition->getData(0);
219
220#ifdef HAVE_MUELU_DEBUG
221 // Test range of partition ids
222 int incorrectRank = -1;
223 for (int i = 0; i < decompEntries.size(); i++)
224 if (decompEntries[i] >= numProcs || decompEntries[i] < 0) {
225 incorrectRank = myRank;
226 break;
227 }
228
229 int incorrectGlobalRank = -1;
230 MueLu_maxAll(comm, incorrectRank, incorrectGlobalRank);
231 TEUCHOS_TEST_FOR_EXCEPTION(incorrectGlobalRank > -1, Exceptions::RuntimeError, "pid " + Teuchos::toString(incorrectGlobalRank) + " encountered a partition number is that out-of-range");
232#endif
233
234 Array<GO> myGIDs;
235 myGIDs.reserve(decomposition->getLocalLength());
236
237 // Step 0: Construct mapping
238 // part number -> GIDs I own which belong to this part
239 // NOTE: my own part GIDs are not part of the map
240 typedef std::map<GO, Array<GO> > map_type;
241 map_type sendMap;
242 for (LO i = 0; i < decompEntries.size(); i++) {
243 GO id = decompEntries[i];
244 GO GID = rowMap->getGlobalElement(i);
245
246 if (id == myRank)
247 myGIDs.push_back(GID);
248 else
249 sendMap[id].push_back(GID);
250 }
251 decompEntries = Teuchos::null;
252
253 if (IsPrint(Statistics2)) {
254 GO numLocalKept = myGIDs.size(), numGlobalKept, numGlobalRows = A->getGlobalNumRows();
255 MueLu_sumAll(comm, numLocalKept, numGlobalKept);
256 GetOStream(Statistics2) << "Unmoved rows: " << numGlobalKept << " / " << numGlobalRows << " (" << 100 * Teuchos::as<double>(numGlobalKept) / numGlobalRows << "%)" << std::endl;
257 }
258
259 int numSend = sendMap.size(), numRecv;
260
261 // Arrayify map keys
262 Array<GO> myParts(numSend), myPart(1);
263 int cnt = 0;
264 myPart[0] = myRank;
265 for (typename map_type::const_iterator it = sendMap.begin(); it != sendMap.end(); it++)
266 myParts[cnt++] = it->first;
267
268 // Step 1: Find out how many processors send me data
269 // partsIndexBase starts from zero, as the processors ids start from zero
270 {
271 SubFactoryMonitor m1(*this, "Mapping Step 1", currentLevel);
272 GO partsIndexBase = 0;
273 RCP<Map> partsIHave = MapFactory ::Build(lib, Teuchos::OrdinalTraits<Xpetra::global_size_t>::invalid(), myParts(), partsIndexBase, comm);
274 RCP<Map> partsIOwn = MapFactory ::Build(lib, numProcs, myPart(), partsIndexBase, comm);
275 RCP<Export> partsExport = ExportFactory::Build(partsIHave, partsIOwn);
276
277 RCP<GOVector> partsISend = Xpetra::VectorFactory<GO, LO, GO, NO>::Build(partsIHave);
278 RCP<GOVector> numPartsIRecv = Xpetra::VectorFactory<GO, LO, GO, NO>::Build(partsIOwn);
279 if (numSend) {
280 ArrayRCP<GO> partsISendData = partsISend->getDataNonConst(0);
281 for (int i = 0; i < numSend; i++)
282 partsISendData[i] = 1;
283 }
284 (numPartsIRecv->getDataNonConst(0))[0] = 0;
285
286 numPartsIRecv->doExport(*partsISend, *partsExport, Xpetra::ADD);
287 numRecv = (numPartsIRecv->getData(0))[0];
288 }
289
290 // Step 2: Get my GIDs from everybody else
291 MPI_Datatype MpiType = Teuchos::Details::MpiTypeTraits<GO>::getType();
292 int msgTag = 12345; // TODO: use Comm::dup for all internal messaging
293
294 // Post sends
295 Array<MPI_Request> sendReqs(numSend);
296 cnt = 0;
297 for (typename map_type::iterator it = sendMap.begin(); it != sendMap.end(); it++)
298 MPI_Isend(static_cast<void*>(it->second.getRawPtr()), it->second.size(), MpiType, Teuchos::as<GO>(it->first), msgTag, *rawMpiComm, &sendReqs[cnt++]);
299
300 map_type recvMap;
301 size_t totalGIDs = myGIDs.size();
302 for (int i = 0; i < numRecv; i++) {
303 MPI_Status status;
304 MPI_Probe(MPI_ANY_SOURCE, msgTag, *rawMpiComm, &status);
305
306 // Get rank and number of elements from status
307 int fromRank = status.MPI_SOURCE, count;
308 MPI_Get_count(&status, MpiType, &count);
309
310 recvMap[fromRank].resize(count);
311 MPI_Recv(static_cast<void*>(recvMap[fromRank].getRawPtr()), count, MpiType, fromRank, msgTag, *rawMpiComm, &status);
312
313 totalGIDs += count;
314 }
315
316 // Do waits on send requests
317 if (numSend) {
318 Array<MPI_Status> sendStatuses(numSend);
319 MPI_Waitall(numSend, sendReqs.getRawPtr(), sendStatuses.getRawPtr());
320 }
321
322 // Merge GIDs
323 myGIDs.reserve(totalGIDs);
324 for (typename map_type::const_iterator it = recvMap.begin(); it != recvMap.end(); it++) {
325 int offset = myGIDs.size(), len = it->second.size();
326 if (len) {
327 myGIDs.resize(offset + len);
328 memcpy(myGIDs.getRawPtr() + offset, it->second.getRawPtr(), len * sizeof(GO));
329 }
330 }
331 // NOTE 2: The general sorting algorithm could be sped up by using the knowledge that original myGIDs and all received chunks
332 // (i.e. it->second) are sorted. Therefore, a merge sort would work well in this situation.
333 std::sort(myGIDs.begin(), myGIDs.end());
334
335 // Step 3: Construct importer
336 RCP<Map> newRowMap;
337 {
338 SubFactoryMonitor m1(*this, "Map construction", currentLevel);
339 newRowMap = MapFactory ::Build(lib, rowMap->getGlobalNumElements(), myGIDs(), indexBase, origComm);
340 }
341
342 RCP<const Import> rowMapImporter;
343
344 RCP<const BlockedMap> blockedRowMap = Teuchos::rcp_dynamic_cast<const BlockedMap>(rowMap);
345
346 {
347 SubFactoryMonitor m1(*this, "Import construction", currentLevel);
348 // Generate a nonblocked rowmap if we need one
349 if (blockedRowMap.is_null())
350 rowMapImporter = ImportFactory::Build(rowMap, newRowMap);
351 else {
352 rowMapImporter = ImportFactory::Build(blockedRowMap->getMap(), newRowMap);
353 }
354 }
355
356 // If we're running BlockedCrs we should chop up the newRowMap into a newBlockedRowMap here (and do likewise for importers)
357 if (!blockedRowMap.is_null()) {
358 SubFactoryMonitor m1(*this, "Blocking newRowMap and Importer", currentLevel);
359 RCP<const BlockedMap> blockedTargetMap = MueLu::UtilitiesBase<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GeneratedBlockedTargetMap(*blockedRowMap, *rowMapImporter);
360
361 // NOTE: This code qualifies as "correct but not particularly performant" If this needs to be sped up, we can probably read data from the existing importer to
362 // build sub-importers rather than generating new ones ex nihilo
363 size_t numBlocks = blockedRowMap->getNumMaps();
364 std::vector<RCP<const Import> > subImports(numBlocks);
365
366 for (size_t i = 0; i < numBlocks; i++) {
367 RCP<const Map> source = blockedRowMap->getMap(i);
368 RCP<const Map> target = blockedTargetMap->getMap(i);
369 subImports[i] = ImportFactory::Build(source, target);
370 }
371 Set(currentLevel, "SubImporters", subImports);
372 }
373
374 Set(currentLevel, "Importer", rowMapImporter);
375
376 // Importer saving
377 bool save_importer = pL.get<bool>("repartition: save importer");
378 if (save_importer) {
379 currentLevel.Set("Importer", rowMapImporter, NoFactory::get());
380 currentLevel.AddKeepFlag("Importer", NoFactory::get(), MueLu::Final);
381 currentLevel.RemoveKeepFlag("Importer", NoFactory::get(), MueLu::UserData); // FIXME: This is a hack
382 }
383 // ======================================================================================================
384 // Print some data
385 // ======================================================================================================
386 if (!rowMapImporter.is_null() && IsPrint(Statistics2)) {
387 // int oldRank = SetProcRankVerbose(rebalancedAc->getRowMap()->getComm()->getRank());
388 GetOStream(Statistics2) << PerfUtils::PrintImporterInfo(rowMapImporter, "Importer for rebalancing");
389 // SetProcRankVerbose(oldRank);
390 }
391 if (pL.get<bool>("repartition: print partition distribution") && IsPrint(Statistics2)) {
392 // Print the grid of processors
393 GetOStream(Statistics2) << "Partition distribution over cores (ownership is indicated by '+')" << std::endl;
394
395 char amActive = (myGIDs.size() ? 1 : 0);
396 std::vector<char> areActive(numProcs, 0);
397 MPI_Gather(&amActive, 1, MPI_CHAR, &areActive[0], 1, MPI_CHAR, 0, *rawMpiComm);
398
399 int rowWidth = std::min(Teuchos::as<int>(ceil(sqrt(numProcs))), 100);
400 for (int proc = 0; proc < numProcs; proc += rowWidth) {
401 for (int j = 0; j < rowWidth; j++)
402 if (proc + j < numProcs)
403 GetOStream(Statistics2) << (areActive[proc + j] ? "+" : ".");
404 else
405 GetOStream(Statistics2) << " ";
406
407 GetOStream(Statistics2) << " " << proc << ":" << std::min(proc + rowWidth, numProcs) - 1 << std::endl;
408 }
409 }
410
411} // Build
412
413//----------------------------------------------------------------------
414template <typename T, typename W>
415struct Triplet {
416 T i, j;
417 W v;
418};
419template <typename T, typename W>
420static bool compareTriplets(const Triplet<T, W>& a, const Triplet<T, W>& b) {
421 return (a.v > b.v); // descending order
422}
423
424template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
426 DeterminePartitionPlacement(const Matrix& A, GOVector& decomposition, GO numPartitions, bool willAcceptPartition, bool allSubdomainsAcceptPartitions) const {
427 RCP<const Map> rowMap = A.getRowMap();
428
429 RCP<const Teuchos::Comm<int> > comm = rowMap->getComm()->duplicate();
430 int numProcs = comm->getSize();
431
432 RCP<const Teuchos::MpiComm<int> > tmpic = rcp_dynamic_cast<const Teuchos::MpiComm<int> >(comm);
433 TEUCHOS_TEST_FOR_EXCEPTION(tmpic == Teuchos::null, Exceptions::RuntimeError, "Cannot cast base Teuchos::Comm to Teuchos::MpiComm object.");
434 RCP<const Teuchos::OpaqueWrapper<MPI_Comm> > rawMpiComm = tmpic->getRawMpiComm();
435
436 const Teuchos::ParameterList& pL = GetParameterList();
437
438 // maxLocal is a constant which determins the number of largest edges which are being exchanged
439 // The idea is that we do not want to construct the full bipartite graph, but simply a subset of
440 // it, which requires less communication. By selecting largest local edges we hope to achieve
441 // similar results but at a lower cost.
442 const int maxLocal = pL.get<int>("repartition: remap num values");
443 const int dataSize = 2 * maxLocal;
444
445 ArrayRCP<GO> decompEntries;
446 if (decomposition.getLocalLength() > 0)
447 decompEntries = decomposition.getDataNonConst(0);
448
449 // Step 1: Sort local edges by weight
450 // Each edge of a bipartite graph corresponds to a triplet (i, j, v) where
451 // i: processor id that has some piece of part with part_id = j
452 // j: part id
453 // v: weight of the edge
454 // We set edge weights to be the total number of nonzeros in rows on this processor which
455 // correspond to this part_id. The idea is that when we redistribute matrix, this weight
456 // is a good approximation of the amount of data to move.
457 // We use two maps, original which maps a partition id of an edge to the corresponding weight,
458 // and a reverse one, which is necessary to sort by edges.
459 std::map<GO, GO> lEdges;
460 if (willAcceptPartition)
461 for (LO i = 0; i < decompEntries.size(); i++)
462 lEdges[decompEntries[i]] += A.getNumEntriesInLocalRow(i);
463
464 // Reverse map, so that edges are sorted by weight.
465 // This results in multimap, as we may have edges with the same weight
466 std::multimap<GO, GO> revlEdges;
467 for (typename std::map<GO, GO>::const_iterator it = lEdges.begin(); it != lEdges.end(); it++)
468 revlEdges.insert(std::make_pair(it->second, it->first));
469
470 // Both lData and gData are arrays of data which we communicate. The data is stored
471 // in pairs, so that data[2*i+0] is the part index, and data[2*i+1] is the corresponding edge weight.
472 // We do not store processor id in data, as we can compute that by looking on the offset in the gData.
473 Array<GO> lData(dataSize, -1), gData(numProcs * dataSize);
474 int numEdges = 0;
475 for (typename std::multimap<GO, GO>::reverse_iterator rit = revlEdges.rbegin(); rit != revlEdges.rend() && numEdges < maxLocal; rit++) {
476 lData[2 * numEdges + 0] = rit->second; // part id
477 lData[2 * numEdges + 1] = rit->first; // edge weight
478 numEdges++;
479 }
480
481 // Step 2: Gather most edges
482 // Each processors contributes maxLocal edges by providing maxLocal pairs <part id, weight>, which is of size dataSize
483 MPI_Datatype MpiType = Teuchos::Details::MpiTypeTraits<GO>::getType();
484 MPI_Allgather(static_cast<void*>(lData.getRawPtr()), dataSize, MpiType, static_cast<void*>(gData.getRawPtr()), dataSize, MpiType, *rawMpiComm);
485
486 // Step 3: Construct mapping
487
488 // Construct the set of triplets
489 Teuchos::Array<Triplet<int, int> > gEdges(numProcs * maxLocal);
490 Teuchos::Array<bool> procWillAcceptPartition(numProcs, allSubdomainsAcceptPartitions);
491 size_t k = 0;
492 for (LO i = 0; i < gData.size(); i += 2) {
493 int procNo = i / dataSize; // determine the processor by its offset (since every processor sends the same amount)
494 GO part = gData[i + 0];
495 GO weight = gData[i + 1];
496 if (part != -1) { // skip nonexistent edges
497 gEdges[k].i = procNo;
498 gEdges[k].j = part;
499 gEdges[k].v = weight;
500 procWillAcceptPartition[procNo] = true;
501 k++;
502 }
503 }
504 gEdges.resize(k);
505
506 // Sort edges by weight
507 // NOTE: compareTriplets is actually a reverse sort, so the edges weight is in decreasing order
508 std::sort(gEdges.begin(), gEdges.end(), compareTriplets<int, int>);
509
510 // Do matching
511 std::map<int, int> match;
512 Teuchos::Array<char> matchedRanks(numProcs, 0), matchedParts(numPartitions, 0);
513 int numMatched = 0;
514 for (typename Teuchos::Array<Triplet<int, int> >::const_iterator it = gEdges.begin(); it != gEdges.end(); it++) {
515 GO rank = it->i;
516 GO part = it->j;
517 if (matchedRanks[rank] == 0 && matchedParts[part] == 0) {
518 matchedRanks[rank] = 1;
519 matchedParts[part] = 1;
520 match[part] = rank;
521 numMatched++;
522 }
523 }
524 GetOStream(Statistics1) << "Number of unassigned partitions before cleanup stage: " << (numPartitions - numMatched) << " / " << numPartitions << std::endl;
525
526 // Step 4: Assign unassigned partitions if necessary.
527 // We do that through desperate matching for remaining partitions:
528 // We select the lowest rank that can still take a partition.
529 // The reason it is done this way is that we don't need any extra communication, as we don't
530 // need to know which parts are valid.
531 if (numPartitions - numMatched > 0) {
532 Teuchos::Array<char> partitionCounts(numPartitions, 0);
533 for (typename std::map<int, int>::const_iterator it = match.begin(); it != match.end(); it++)
534 partitionCounts[it->first] += 1;
535 for (int part = 0, matcher = 0; part < numPartitions; part++) {
536 if (partitionCounts[part] == 0) {
537 // Find first non-matched rank that accepts partitions
538 while (matchedRanks[matcher] || !procWillAcceptPartition[matcher])
539 matcher++;
540
541 match[part] = matcher++;
542 numMatched++;
543 }
544 }
545 }
546
547 TEUCHOS_TEST_FOR_EXCEPTION(numMatched != numPartitions, Exceptions::RuntimeError, "MueLu::RepartitionFactory::DeterminePartitionPlacement: Only " << numMatched << " partitions out of " << numPartitions << " got assigned to ranks.");
548
549 // Step 5: Permute entries in the decomposition vector
550 for (LO i = 0; i < decompEntries.size(); i++)
551 decompEntries[i] = match[decompEntries[i]];
552}
553
554} // namespace MueLu
555
556#endif // ifdef HAVE_MPI
557
558#endif // MUELU_REPARTITIONFACTORY_DEF_HPP
#define SET_VALID_ENTRY(name)
#define MueLu_maxAll(rcpComm, in, out)
#define MueLu_sumAll(rcpComm, in, out)
Exception throws to report errors in the internal logical of the program.
Timer to be used in factories. Similar to Monitor but with additional timers.
Class that holds all level-specific information.
void RemoveKeepFlag(const std::string &ename, const FactoryBase *factory, KeepType keep=MueLu::All)
int GetLevelID() const
Return level number.
void AddKeepFlag(const std::string &ename, const FactoryBase *factory=NoFactory::get(), KeepType keep=MueLu::Keep)
void Set(const std::string &ename, const T &entry, const FactoryBase *factory=NoFactory::get())
static const NoFactory * get()
static std::string PrintImporterInfo(RCP< const Import > importer, const std::string &msgTag)
virtual ~RepartitionFactory()
Destructor.
void Build(Level &currentLevel) const
Build an object with this factory.
void DeterminePartitionPlacement(const Matrix &A, GOVector &decomposition, GO numPartitions, bool willAcceptPartition=true, bool allSubdomainsAcceptPartitions=true) const
Determine which process should own each partition.
void DeclareInput(Level &currentLevel) const
Determines the data that RepartitionFactory needs, and the factories that generate that data.
RepartitionFactory()
Constructor.
RCP< const ParameterList > GetValidParameterList() const
Return a const parameter list of valid parameters that setParameterList() will accept.
Timer to be used in factories. Similar to SubMonitor but adds a timer level by level.
static RCP< const Xpetra::BlockedMap< LocalOrdinal, GlobalOrdinal, Node > > GeneratedBlockedTargetMap(const Xpetra::BlockedMap< LocalOrdinal, GlobalOrdinal, Node > &sourceBlockedMap, const Xpetra::Import< LocalOrdinal, GlobalOrdinal, Node > &Importer)
Namespace for MueLu classes and methods.
@ Final
Keep data only for this run. Used to keep data useful for Hierarchy::Iterate(). Data will be deleted ...
@ UserData
User data are always kept. This flag is set automatically when Level::Set("data", data) is used....
static bool compareTriplets(const Triplet< T, W > &a, const Triplet< T, W > &b)
@ Warnings0
Important warning messages (one line)
@ Statistics2
Print even more statistics.
@ Statistics1
Print more statistics.
@ Runtime0
One-liner description of what is happening.