59 using STS = Teuchos::ScalarTraits<SC>;
60 const SC one = STS::one();
61 using Magnitude =
typename Teuchos::ScalarTraits<Scalar>::magnitudeType;
63 const ParameterList& pL = GetParameterList();
64 const bool fixing = pL.get<
bool>(
"inverse: fixing");
67 const std::string method = pL.get<std::string>(
"inverse: approximation type");
68 TEUCHOS_TEST_FOR_EXCEPTION(method !=
"diagonal" && method !=
"lumping" && method !=
"sparseapproxinverse",
Exceptions::RuntimeError,
69 "MueLu::InverseApproximationFactory::Build: Approximation type can be 'diagonal' or 'lumping' or "
70 "'sparseapproxinverse'.");
72 RCP<Matrix> A = Get<RCP<Matrix>>(currentLevel,
"A");
73 RCP<BlockedCrsMatrix> bA = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(A);
74 const bool isBlocked = (bA == Teuchos::null ? false :
true);
77 if (isBlocked) A = bA->getMatrix(0, 0);
79 const Magnitude tol = pL.get<Magnitude>(
"inverse: drop tolerance");
80 RCP<Matrix> Ainv = Teuchos::null;
82 if (method ==
"diagonal") {
83 const auto diag = VectorFactory::Build(A->getRangeMap(),
true);
84 A->getLocalDiagCopy(*diag);
86 Ainv = MatrixFactory::Build(D);
87 }
else if (method ==
"lumping") {
90 Ainv = MatrixFactory::Build(D);
91 }
else if (method ==
"sparseapproxinverse") {
93 GetOStream(
Statistics1) <<
"NNZ Graph(A): " << A->getCrsGraph()->getGlobalNumEntries() <<
" , NNZ Tresholded Graph(A): " << sparsityPattern->getGlobalNumEntries() << std::endl;
94 RCP<Matrix> pAinv = GetSparseInverse(A, sparsityPattern);
96 GetOStream(
Statistics1) <<
"NNZ Ainv: " << pAinv->getGlobalNumEntries() <<
", NNZ Tresholded Ainv (parameter: " << tol <<
"): " << Ainv->getGlobalNumEntries() << std::endl;
99 GetOStream(
Statistics1) <<
"Approximate inverse calculated by: " << method <<
"." << std::endl;
100 GetOStream(
Statistics1) <<
"Ainv has " << Ainv->getGlobalNumRows() <<
"x" << Ainv->getGlobalNumCols() <<
" rows and columns." << std::endl;
102 Set(currentLevel,
"Ainv", Ainv);
106RCP<Xpetra::Matrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>>
109 RCP<Matrix> Ainv = MatrixFactory::Build(sparsityPattern);
113 RCP<Import> rowImport = ImportFactory::Build(sparsityPattern->getRowMap(), sparsityPattern->getColMap());
114 RCP<Matrix> A = MatrixFactory::Build(Aorg, *rowImport);
117 for (
size_t k = 0; k < sparsityPattern->getLocalNumRows(); k++) {
119 ArrayView<const LO> Ik;
120 sparsityPattern->getLocalRowView(k, Ik);
123 Array<ArrayView<const LO>> J(Ik.size());
124 Array<ArrayView<const SC>> Ak(Ik.size());
126 for (LO i = 0; i < Ik.size(); i++) {
127 A->getLocalRowView(Ik[i], J[i], Ak[i]);
128 for (LO j = 0; j < J[i].size(); j++)
132 std::sort(Jk.begin(), Jk.end());
133 Jk.erase(std::unique(Jk.begin(), Jk.end()), Jk.end());
136 for (LO i = 0; i < Jk.size(); i++) G.insert(std::pair<LO, LO>(Jk[i], i));
139 Teuchos::SerialDenseMatrix<LO, SC> localA(Jk.size(), Ik.size(),
true);
140 for (LO i = 0; i < Ik.size(); i++) {
141 for (LO j = 0; j < J[i].size(); j++) {
142 localA(G.at(J[i][j]), i) = Ak[i][j];
148 Teuchos::SerialDenseVector<LO, SC> ek(Jk.size(),
true);
149 ek[std::find(Jk.begin(), Jk.end(), k) - Jk.begin()] = Teuchos::ScalarTraits<Scalar>::one();
153 Teuchos::SerialDenseVector<LO, SC> localX(Ik.size());
154 Teuchos::SerialQRDenseSolver<LO, SC> qrSolver;
155 qrSolver.setMatrix(Teuchos::rcp(&localA,
false));
156 qrSolver.setVectors(Teuchos::rcp(&localX,
false), Teuchos::rcp(&ek,
false));
157 const int err = qrSolver.solve();
159 "MueLu::InverseApproximationFactory::GetSparseInverse: Error in serial QR solve.");
162 ArrayView<const SC> Mk(localX.values(), localX.length());
163 Ainv->replaceLocalValues(k, Ik, Mk);
165 Ainv->fillComplete();
static Teuchos::RCP< Vector > GetInverse(Teuchos::RCP< const Vector > v, Magnitude tol=Teuchos::ScalarTraits< Scalar >::eps() *100, Scalar valReplacement=Teuchos::ScalarTraits< Scalar >::zero())
Return vector containing inverse of input vector.
static Teuchos::RCP< Vector > GetLumpedMatrixDiagonal(Matrix const &A, const bool doReciprocal=false, Magnitude tol=Teuchos::ScalarTraits< Scalar >::magnitude(Teuchos::ScalarTraits< Scalar >::zero()), Scalar valReplacement=Teuchos::ScalarTraits< Scalar >::zero(), const bool replaceSingleEntryRowWithZero=false, const bool useAverageAbsDiagVal=false)
Extract Matrix Diagonal of lumped matrix.