Intrepid2
Intrepid2_HGRAD_HEX_Cn_FEMDef.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Intrepid2 Package
4//
5// Copyright 2007 NTESS and the Intrepid2 contributors.
6// SPDX-License-Identifier: BSD-3-Clause
7// *****************************************************************************
8// @HEADER
9
16#ifndef __INTREPID2_HGRAD_HEX_CN_FEMDEF_HPP__
17#define __INTREPID2_HGRAD_HEX_CN_FEMDEF_HPP__
18
19namespace Intrepid2 {
20
21 // -------------------------------------------------------------------------------------
22 namespace Impl {
23
24 template<EOperator opType>
25 template<typename OutputViewType,
26 typename inputViewType,
27 typename workViewType,
28 typename vinvViewType>
29 KOKKOS_INLINE_FUNCTION
30 void
31 Basis_HGRAD_HEX_Cn_FEM::Serial<opType>::
32 getValues( OutputViewType output,
33 const inputViewType input,
34 workViewType work,
35 const vinvViewType vinv,
36 const ordinal_type operatorDn ) {
37 ordinal_type opDn = operatorDn;
38
39 const ordinal_type cardLine = vinv.extent(0);
40 const ordinal_type npts = input.extent(0);
41
42 typedef Kokkos::pair<ordinal_type,ordinal_type> range_type;
43 const auto input_x = Kokkos::subview(input, Kokkos::ALL(), range_type(0,1));
44 const auto input_y = Kokkos::subview(input, Kokkos::ALL(), range_type(1,2));
45 const auto input_z = Kokkos::subview(input, Kokkos::ALL(), range_type(2,3));
46
47 const ordinal_type dim_s = get_dimension_scalar(input);
48 auto ptr0 = work.data();
49 auto ptr1 = work.data()+cardLine*npts*dim_s;
50 auto ptr2 = work.data()+2*cardLine*npts*dim_s;
51 auto ptr3 = work.data()+3*cardLine*npts*dim_s;
52
53 typedef typename Kokkos::DynRankView<typename inputViewType::value_type, typename workViewType::memory_space> viewType;
54 auto vcprop = Kokkos::common_view_alloc_prop(input);
55
56 switch (opType) {
57 case OPERATOR_VALUE: {
58 viewType work_line(Kokkos::view_wrap(ptr0, vcprop), cardLine, npts);
59 viewType output_x(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts);
60 viewType output_y(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts);
61 viewType output_z(Kokkos::view_wrap(ptr3, vcprop), cardLine, npts);
62
63 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
64 getValues(output_x, input_x, work_line, vinv);
65
66 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
67 getValues(output_y, input_y, work_line, vinv);
68
69 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
70 getValues(output_z, input_z, work_line, vinv);
71
72 // tensor product
73 ordinal_type idx = 0;
74 for (ordinal_type k=0;k<cardLine;++k) // z
75 for (ordinal_type j=0;j<cardLine;++j) // y
76 for (ordinal_type i=0;i<cardLine;++i,++idx) // x
77 for (ordinal_type l=0;l<npts;++l)
78 output.access(idx,l) = output_x.access(i,l)*output_y.access(j,l)*output_z.access(k,l);
79 break;
80 }
81 case OPERATOR_GRAD:
82 case OPERATOR_D1:
83 case OPERATOR_D2:
84 case OPERATOR_D3:
85 case OPERATOR_D4:
86 case OPERATOR_D5:
87 case OPERATOR_D6:
88 case OPERATOR_D7:
89 case OPERATOR_D8:
90 case OPERATOR_D9:
91 case OPERATOR_D10:
92 opDn = getOperatorOrder(opType);
93 case OPERATOR_Dn: {
94 const ordinal_type dkcard = opDn + 1;
95
96 ordinal_type d = 0;
97 for (ordinal_type l1=0;l1<dkcard;++l1)
98 for (ordinal_type l0=0;l0<(l1+1);++l0) {
99 const ordinal_type mult_x = (opDn - l1);
100 const ordinal_type mult_y = l1 - l0;
101 const ordinal_type mult_z = l0;
102
103 //std::cout << " l0, l1 = " << l0 << " " << l1 << std::endl;
104 //std::cout << " x , y , z = " << mult_x << " " << mult_y << " " << mult_z << std::endl;
105
106 if (mult_x < 0) {
107 // pass
108 } else {
109 viewType work_line(Kokkos::view_wrap(ptr0, vcprop), cardLine, npts);
110 decltype(work_line) output_x, output_y, output_z;
111
112 if (mult_x) {
113 output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts, 1);
114 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
115 getValues(output_x, input_x, work_line, vinv, mult_x);
116 } else {
117 output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts);
118 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
119 getValues(output_x, input_x, work_line, vinv);
120 }
121
122 if (mult_y) {
123 output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts, 1);
124 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
125 getValues(output_y, input_y, work_line, vinv, mult_y);
126 } else {
127 output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts);
128 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
129 getValues(output_y, input_y, work_line, vinv);
130 }
131
132 if (mult_z) {
133 output_z = viewType(Kokkos::view_wrap(ptr3, vcprop), cardLine, npts, 1);
134 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
135 getValues(output_z, input_z, work_line, vinv, mult_z);
136 } else {
137 output_z = viewType(Kokkos::view_wrap(ptr3, vcprop), cardLine, npts);
138 Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
139 getValues(output_z, input_z, work_line, vinv);
140 }
141
142 // tensor product (extra dimension of ouput x,y and z are ignored)
143 ordinal_type idx = 0;
144 for (ordinal_type k=0;k<cardLine;++k) // z
145 for (ordinal_type j=0;j<cardLine;++j) // y
146 for (ordinal_type i=0;i<cardLine;++i,++idx) // x
147 for (ordinal_type l=0;l<npts;++l)
148 output.access(idx,l,d) = output_x.access(i,l,0)*output_y.access(j,l,0)*output_z.access(k,l,0);
149 ++d;
150 }
151 }
152 break;
153 }
154 default: {
155 INTREPID2_TEST_FOR_ABORT( true ,
156 ">>> ERROR (Basis_HGRAD_HEX_Cn_FEM): Operator type not implemented");
157 break;
158 }
159 }
160 }
161
162 template<typename DT, ordinal_type numPtsPerEval,
163 typename outputValueValueType, class ...outputValueProperties,
164 typename inputPointValueType, class ...inputPointProperties,
165 typename vinvValueType, class ...vinvProperties>
166 void
167 Basis_HGRAD_HEX_Cn_FEM::
168 getValues( const typename DT::execution_space& space,
169 Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
170 const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
171 const Kokkos::DynRankView<vinvValueType, vinvProperties...> vinv,
172 const EOperator operatorType ) {
173 typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
174 typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
175 typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
176 typedef typename ExecSpace<typename inputPointViewType::execution_space,typename DT::execution_space>::ExecSpaceType ExecSpaceType;
177
178 // loopSize corresponds to cardinality
179 const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
180 const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
181 const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
182 Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(space, 0, loopSize);
183
184 typedef typename inputPointViewType::value_type inputPointType;
185
186 const ordinal_type cardinality = outputValues.extent(0);
187 const ordinal_type cardLine = std::cbrt(cardinality);
188 const ordinal_type workSize = 4*cardLine;
189
190 auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
191 typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
192 workViewType work(Kokkos::view_alloc(space, "Basis_HGRAD_HEX_Cn_FEM::getValues::work", vcprop), workSize, inputPoints.extent(0));
193
194 switch (operatorType) {
195 case OPERATOR_VALUE: {
196 typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
197 OPERATOR_VALUE,numPtsPerEval> FunctorType;
198 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work) );
199 break;
200 }
201 case OPERATOR_CURL: {
202 typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
203 OPERATOR_CURL,numPtsPerEval> FunctorType;
204 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work) );
205 break;
206 }
207 case OPERATOR_GRAD:
208 case OPERATOR_D1:
209 case OPERATOR_D2:
210 case OPERATOR_D3:
211 case OPERATOR_D4:
212 case OPERATOR_D5:
213 case OPERATOR_D6:
214 case OPERATOR_D7:
215 case OPERATOR_D8:
216 case OPERATOR_D9:
217 case OPERATOR_D10: {
218 typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
219 OPERATOR_Dn,numPtsPerEval> FunctorType;
220 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work,
221 getOperatorOrder(operatorType)) );
222 break;
223 }
224 default: {
225 INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
226 ">>> ERROR (Basis_HGRAD_HEX_Cn_FEM): Operator type not implemented" );
227 // break; commented out since exception is thrown
228 }
229 }
230 }
231 }
232
233 // -------------------------------------------------------------------------------------
234 template<typename DT, typename OT, typename PT>
236 Basis_HGRAD_HEX_Cn_FEM( const ordinal_type order,
237 const EPointType pointType ) {
238
239 // this should be in host
240 Basis_HGRAD_LINE_Cn_FEM<DT,OT,PT> lineBasis( order, pointType );
241 const auto cardLine = lineBasis.getCardinality();
242
243 this->vinv_ = Kokkos::DynRankView<typename ScalarViewType::value_type,DT>("Hgrad::HEX::Cn::vinv", cardLine, cardLine);
244 lineBasis.getVandermondeInverse(this->vinv_);
245
246 const ordinal_type spaceDim = 3;
247 this->basisCardinality_ = cardLine*cardLine*cardLine;
248 this->basisDegree_ = order;
249 this->basisCellTopologyKey_ = shards::Hexahedron<8>::key;
250 this->basisType_ = BASIS_FEM_LAGRANGIAN;
251 this->basisCoordinates_ = COORDINATES_CARTESIAN;
252 this->functionSpace_ = FUNCTION_SPACE_HGRAD;
253 pointType_ = pointType;
254
255 // initialize tags
256 {
257 // Basis-dependent initializations
258 const ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
259 const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
260 const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
261 const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
262
263 // Note: the only reason why equispaced can't support higher order than Parameters::MaxOrder appears to be the fact that the tags below get stored into a fixed-length array.
264 // TODO: relax the maximum order requirement by setting up tags in a different container, perhaps directly into an OrdinalTypeArray1DHost (tagView, below). (As of this writing (1/25/22), looks like other nodal bases do this in a similar way -- those should be fixed at the same time; maybe search for Parameters::MaxOrder.)
265 INTREPID2_TEST_FOR_EXCEPTION( order > Parameters::MaxOrder, std::invalid_argument, "polynomial order exceeds the max supported by this class");
266
267 // An array with local DoF tags assigned to the basis functions, in the order of their local enumeration
268 constexpr ordinal_type maxCardLine = Parameters::MaxOrder + 1;
269 ordinal_type tags[maxCardLine*maxCardLine*maxCardLine][4];
270
271 const ordinal_type vert[2][2][2] = { { {0,1}, {3,2} },
272 { {4,5}, {7,6} } }; //[z][y][x]
273
274 const ordinal_type edge_x[2][2] = { {0, 4}, {2, 6} };
275 const ordinal_type edge_y[2][2] = { {3, 7}, {1, 5} };
276 const ordinal_type edge_z[2][2] = { {8,11}, {9,10} };
277
278 const ordinal_type face_yz[2] = {3, 1};
279 const ordinal_type face_xz[2] = {0, 2};
280 const ordinal_type face_xy[2] = {4, 5};
281
282 {
283 ordinal_type idx = 0;
284 for (auto k=0;k<cardLine;++k) { // z
285 const auto tag_z = lineBasis.getDofTag(k);
286 for (ordinal_type j=0;j<cardLine;++j) { // y
287 const auto tag_y = lineBasis.getDofTag(j);
288 for (ordinal_type i=0;i<cardLine;++i,++idx) { // x
289 const auto tag_x = lineBasis.getDofTag(i);
290
291 if (tag_x(0) == 0 && tag_y(0) == 0 && tag_z(0) == 0) {
292 // vertices
293 tags[idx][0] = 0; // vertex dof
294 tags[idx][1] = vert[tag_z(1)][tag_y(1)][tag_x(1)]; // vertex id
295 tags[idx][2] = 0; // local dof id
296 tags[idx][3] = 1; // total number of dofs in this vertex
297 } else if (tag_x(0) == 1 && tag_y(0) == 0 && tag_z(0) == 0) {
298 // edge, x edge, y vert, z vert,
299 tags[idx][0] = 1; // edge dof
300 tags[idx][1] = edge_x[tag_y(1)][tag_z(1)]; // edge id
301 tags[idx][2] = tag_x(2); // local dof id
302 tags[idx][3] = tag_x(3); // total number of dofs in this edge
303 } else if (tag_x(0) == 0 && tag_y(0) == 1 && tag_z(0) == 0) {
304 // edge, x vert, y edge, z vert,
305 tags[idx][0] = 1; // edge dof
306 tags[idx][1] = edge_y[tag_x(1)][tag_z(1)]; // edge id
307 tags[idx][2] = tag_y(2); // local dof id
308 tags[idx][3] = tag_y(3); // total number of dofs in this edge
309 } else if (tag_x(0) == 0 && tag_y(0) == 0 && tag_z(0) == 1) {
310 // edge, x vert, y vert, z edge,
311 tags[idx][0] = 1; // edge dof
312 tags[idx][1] = edge_z[tag_x(1)][tag_y(1)]; // edge id
313 tags[idx][2] = tag_z(2); // local dof id
314 tags[idx][3] = tag_z(3); // total number of dofs in this edge
315 } else if (tag_x(0) == 0 && tag_y(0) == 1 && tag_z(0) == 1) {
316 // face, x vert, y edge, z edge
317 tags[idx][0] = 2; // face dof
318 tags[idx][1] = face_yz[tag_x(1)]; // face id
319 tags[idx][2] = tag_y(2) + tag_y(3)*tag_z(2); // local dof id
320 tags[idx][3] = tag_y(3)*tag_z(3); // total number of dofs in this vertex
321 } else if (tag_x(0) == 1 && tag_y(0) == 0 && tag_z(0) == 1) {
322 // face, x edge, y vert, z edge
323 tags[idx][0] = 2; // face dof
324 tags[idx][1] = face_xz[tag_y(1)]; // face id
325 tags[idx][2] = tag_x(2) + tag_x(3)*tag_z(2); // local dof id
326 tags[idx][3] = tag_x(3)*tag_z(3); // total number of dofs in this vertex
327 } else if (tag_x(0) == 1 && tag_y(0) == 1 && tag_z(0) == 0) {
328 // face, x edge, y edge, z vert
329 tags[idx][0] = 2; // face dof
330 tags[idx][1] = face_xy[tag_z(1)]; // face id
331 tags[idx][2] = tag_x(2) + tag_x(3)*tag_y(2); // local dof id
332 tags[idx][3] = tag_x(3)*tag_y(3); // total number of dofs in this vertex
333 } else {
334 // interior
335 tags[idx][0] = 3; // interior dof
336 tags[idx][1] = 0;
337 tags[idx][2] = tag_x(2) + tag_x(3)*tag_y(2) + tag_x(3)*tag_y(3)*tag_z(2); // local dof id
338 tags[idx][3] = tag_x(3)*tag_y(3)*tag_z(3); // total number of dofs in this vertex
339 }
340 }
341 }
342 }
343 }
344
345 OrdinalTypeArray1DHost tagView(&tags[0][0], this->basisCardinality_*4);
346
347 // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
348 // tags are constructed on host
349 this->setOrdinalTagData(this->tagToOrdinal_,
350 this->ordinalToTag_,
351 tagView,
352 this->basisCardinality_,
353 tagSize,
354 posScDim,
355 posScOrd,
356 posDfOrd);
357 }
358
359 // dofCoords on host and create its mirror view to device
360 Kokkos::DynRankView<typename ScalarViewType::value_type,typename DT::execution_space::array_layout,Kokkos::HostSpace>
361 dofCoordsHost("dofCoordsHost", this->basisCardinality_, spaceDim);
362
363 Kokkos::DynRankView<typename ScalarViewType::value_type,DT>
364 dofCoordsLine("dofCoordsLine", cardLine, 1);
365
366 lineBasis.getDofCoords(dofCoordsLine);
367 auto dofCoordsLineHost = Kokkos::create_mirror_view(dofCoordsLine);
368 Kokkos::deep_copy(dofCoordsLineHost, dofCoordsLine);
369 {
370 ordinal_type idx = 0;
371 for (auto k=0;k<cardLine;++k) { // z
372 for (ordinal_type j=0;j<cardLine;++j) { // y
373 for (ordinal_type i=0;i<cardLine;++i,++idx) { // x
374 dofCoordsHost(idx,0) = dofCoordsLineHost(i,0);
375 dofCoordsHost(idx,1) = dofCoordsLineHost(j,0);
376 dofCoordsHost(idx,2) = dofCoordsLineHost(k,0);
377 }
378 }
379 }
380 }
381
382 this->dofCoords_ = Kokkos::create_mirror_view(typename DT::memory_space(), dofCoordsHost);
383 Kokkos::deep_copy(this->dofCoords_, dofCoordsHost);
384 }
385
386 template<typename DT, typename OT, typename PT>
387 void
389 ordinal_type& perTeamSpaceSize,
390 ordinal_type& perThreadSpaceSize,
391 const PointViewType inputPoints,
392 const EOperator operatorType) const {
393 (void) operatorType; //avoid warning for unused variable
394 perTeamSpaceSize = 0;
395 perThreadSpaceSize = 4*this->vinv_.extent(0)*get_dimension_scalar(inputPoints)*sizeof(typename BasisBase::scalarType);
396 }
397
398 template<typename DT, typename OT, typename PT>
399 KOKKOS_INLINE_FUNCTION
400 void
402 OutputViewType outputValues,
403 const PointViewType inputPoints,
404 const EOperator operatorType,
405 const typename Kokkos::TeamPolicy<typename DT::execution_space>::member_type& team_member,
406 const typename DT::execution_space::scratch_memory_space & scratchStorage,
407 const ordinal_type subcellDim,
408 const ordinal_type subcellOrdinal) const {
409
410 INTREPID2_TEST_FOR_ABORT( !((subcellDim == -1) && (subcellOrdinal == -1)),
411 ">>> ERROR: (Intrepid2::Basis_HGRAD_HEX_Cn_FEM::getValues), The capability of selecting subsets of basis functions has not been implemented yet.");
412
413 const int numPoints = inputPoints.extent(0);
414 using ScalarType = typename ScalarTraits<typename PointViewType::value_type>::scalar_type;
415 using WorkViewType = Kokkos::DynRankView< ScalarType,typename DT::execution_space::scratch_memory_space,Kokkos::MemoryTraits<Kokkos::Unmanaged> >;
416 ordinal_type sizePerPoint = 4*this->vinv_.extent(0)*get_dimension_scalar(inputPoints);
417 WorkViewType workView(scratchStorage, sizePerPoint*team_member.team_size());
418 using range_type = Kokkos::pair<ordinal_type,ordinal_type>;
419
420 switch(operatorType) {
421 case OPERATOR_VALUE:
422 Kokkos::parallel_for (Kokkos::TeamThreadRange (team_member, numPoints), [=, &vinv_ = this->vinv_] (ordinal_type& pt) {
423 auto output = Kokkos::subview( outputValues, Kokkos::ALL(), range_type (pt,pt+1), Kokkos::ALL() );
424 const auto input = Kokkos::subview( inputPoints, range_type(pt, pt+1), Kokkos::ALL() );
425 WorkViewType work(workView.data() + sizePerPoint*team_member.team_rank(), sizePerPoint);
427 });
428 break;
429 case OPERATOR_GRAD:
430 Kokkos::parallel_for (Kokkos::TeamThreadRange (team_member, numPoints), [=, &vinv_ = this->vinv_] (ordinal_type& pt) {
431 auto output = Kokkos::subview( outputValues, Kokkos::ALL(), range_type(pt,pt+1), Kokkos::ALL() );
432 const auto input = Kokkos::subview( inputPoints, range_type(pt,pt+1), Kokkos::ALL() );
433 WorkViewType work(workView.data() + sizePerPoint*team_member.team_rank(), sizePerPoint);
434 Impl::Basis_HGRAD_HEX_Cn_FEM::Serial<OPERATOR_GRAD>::getValues( output, input, work, vinv_ );
435 });
436 break;
437 default: {
438 INTREPID2_TEST_FOR_ABORT( true,
439 ">>> ERROR (Basis_HGRAD_TET_Cn_FEM): getValues not implemented for this operator");
440 }
441 }
442 }
443}// namespace Intrepid2
444
445#endif
KOKKOS_INLINE_FUNCTION ordinal_type getOperatorOrder(const EOperator operatorType)
Returns order of an operator.
Basis_HGRAD_HEX_Cn_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.
virtual void getScratchSpaceSize(ordinal_type &perTeamSpaceSize, ordinal_type &perThreadSpaceSize, const PointViewType inputPoints, const EOperator operatorType=OPERATOR_VALUE) const override
Return the size of the scratch space, in bytes, needed for using the team-level implementation of get...
virtual void getValues(const ExecutionSpace &space, OutputViewType outputValues, const PointViewType inputPoints, const EOperator operatorType=OPERATOR_VALUE) const override
Evaluation of a FEM basis on a reference cell.
Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,...
virtual void getDofCoords(ScalarViewType dofCoords) const override
Returns spatial locations (coordinates) of degrees of freedom on the reference cell.
Kokkos::DynRankView< PointValueType, Kokkos::LayoutStride, DeviceType > PointViewType
View type for input points.
const OrdinalTypeArrayStride1DHost getDofTag(const ordinal_type dofOrd) const
DoF ordinal to DoF tag lookup.
ordinal_type getCardinality() const
Returns cardinality of the basis.
ScalarTraits< pointValueType >::scalar_type scalarType
Scalar type for point values.
Kokkos::View< ordinal_type *, typename ExecutionSpace::array_layout, Kokkos::HostSpace > OrdinalTypeArray1DHost
View type for 1d host array.
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.