Compadre 1.6.4
Loading...
Searching...
No Matches
Compadre_LinearAlgebra_Definitions.hpp
Go to the documentation of this file.
1// @HEADER
2// *****************************************************************************
3// Compadre: COMpatible PArticle Discretization and REmap Toolkit
4//
5// Copyright 2018 NTESS and the Compadre contributors.
6// SPDX-License-Identifier: BSD-2-Clause
7// *****************************************************************************
8// @HEADER
9#ifndef _COMPADRE_LINEAR_ALGEBRA_DEFINITIONS_HPP_
10#define _COMPADRE_LINEAR_ALGEBRA_DEFINITIONS_HPP_
11
13
14namespace Compadre {
15namespace GMLS_LinearAlgebra {
16
17KOKKOS_INLINE_FUNCTION
18void largestTwoEigenvectorsThreeByThreeSymmetric(const member_type& teamMember, scratch_matrix_right_type V, scratch_matrix_right_type PtP, const int dimensions, pool_type& random_number_pool) {
19
20 Kokkos::single(Kokkos::PerTeam(teamMember), [&] () {
21
22 double maxRange = 100;
23
24 generator_type rand_gen = random_number_pool.get_state();
25 // put in a power method here and a deflation by first found eigenvalue
26 double eigenvalue_relative_tolerance = 1e-6; // TODO: use something smaller, but really anything close is acceptable for this manifold
27
28
29 double v[3] = {rand_gen.drand(maxRange),rand_gen.drand(maxRange),rand_gen.drand(maxRange)};
30 double v_old[3] = {v[0], v[1], v[2]};
31
32 double error = 1;
33 double norm_v;
34
35 while (error > eigenvalue_relative_tolerance) {
36
37 double tmp1 = v[0];
38 v[0] = PtP(0,0)*tmp1 + PtP(0,1)*v[1];
39 if (dimensions>2) v[0] += PtP(0,2)*v[2];
40
41 double tmp2 = v[1];
42 v[1] = PtP(1,0)*tmp1 + PtP(1,1)*tmp2;
43 if (dimensions>2) v[1] += PtP(1,2)*v[2];
44
45 if (dimensions>2)
46 v[2] = PtP(2,0)*tmp1 + PtP(2,1)*tmp2 + PtP(2,2)*v[2];
47
48 norm_v = v[0]*v[0] + v[1]*v[1];
49 if (dimensions>2) norm_v += v[2]*v[2];
50 norm_v = std::sqrt(norm_v);
51
52 v[0] = v[0] / norm_v;
53 v[1] = v[1] / norm_v;
54 if (dimensions>2) v[2] = v[2] / norm_v;
55
56 error = (v[0]-v_old[0])*(v[0]-v_old[0]) + (v[1]-v_old[1])*(v[1]-v_old[1]);
57 if (dimensions>2) error += (v[2]-v_old[2])*(v[2]-v_old[2]);
58 error = std::sqrt(error);
59 error /= norm_v;
60
61
62 v_old[0] = v[0];
63 v_old[1] = v[1];
64 if (dimensions>2) v_old[2] = v[2];
65 }
66
67 double dot_product;
68 double norm;
69
70 // if 2D, orthonormalize second vector
71 if (dimensions==2) {
72
73 for (int i=0; i<2; ++i) {
74 V(0,i) = v[i];
75 }
76
77 // orthonormalize second eigenvector against first
78 V(1,0) = 1.0; V(1,1) = 1.0;
79 dot_product = V(0,0)*V(1,0) + V(0,1)*V(1,1);
80 V(1,0) -= dot_product*V(0,0);
81 V(1,1) -= dot_product*V(0,1);
82
83 norm = std::sqrt(V(1,0)*V(1,0) + V(1,1)*V(1,1));
84 V(1,0) /= norm;
85 V(1,1) /= norm;
86
87 } else { // otherwise, work on second eigenvalue
88
89 for (int i=0; i<3; ++i) {
90 V(0,i) = v[i];
91 for (int j=0; j<3; ++j) {
92 PtP(i,j) -= norm_v*v[i]*v[j];
93 }
94 }
95
96 error = 1;
97 v[0] = rand_gen.drand(maxRange); v[1] = rand_gen.drand(maxRange); v[2] = rand_gen.drand(maxRange);
98 v_old[0] = v[0]; v_old[1] = v[1]; v_old[2] =v[2];
99 while (error > eigenvalue_relative_tolerance) {
100
101 double tmp1 = v[0];
102 v[0] = PtP(0,0)*tmp1 + PtP(0,1)*v[1] + PtP(0,2)*v[2];
103
104 double tmp2 = v[1];
105 v[1] = PtP(1,0)*tmp1 + PtP(1,1)*tmp2 + PtP(1,2)*v[2];
106
107 v[2] = PtP(2,0)*tmp1 + PtP(2,1)*tmp2 + PtP(2,2)*v[2];
108
109 norm_v = std::sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
110
111 v[0] = v[0] / norm_v;
112 v[1] = v[1] / norm_v;
113 v[2] = v[2] / norm_v;
114
115 error = std::sqrt((v[0]-v_old[0])*(v[0]-v_old[0]) + (v[1]-v_old[1])*(v[1]-v_old[1]) + (v[2]-v_old[2])*(v[2]-v_old[2])) / norm_v;
116
117 v_old[0] = v[0];
118 v_old[1] = v[1];
119 v_old[2] = v[2];
120 }
121
122 for (int i=0; i<3; ++i) {
123 V(1,i) = v[i];
124 }
125
126 // orthonormalize second eigenvector against first
127 dot_product = V(0,0)*V(1,0) + V(0,1)*V(1,1) + V(0,2)*V(1,2);
128
129 V(1,0) -= dot_product*V(0,0);
130 V(1,1) -= dot_product*V(0,1);
131 V(1,2) -= dot_product*V(0,2);
132
133 norm = std::sqrt(V(1,0)*V(1,0) + V(1,1)*V(1,1) + V(1,2)*V(1,2));
134 V(1,0) /= norm;
135 V(1,1) /= norm;
136 V(1,2) /= norm;
137
138 // get normal from cross product
139 V(2,0) = V(0,1)*V(1,2) - V(1,1)*V(0,2);
140 V(2,1) = V(1,0)*V(0,2) - V(0,0)*V(1,2);
141 V(2,2) = V(0,0)*V(1,1) - V(1,0)*V(0,1);
142
143 // orthonormalize third eigenvector (just to be sure)
144 norm = std::sqrt(V(2,0)*V(2,0) + V(2,1)*V(2,1) + V(2,2)*V(2,2));
145 V(2,0) /= norm;
146 V(2,1) /= norm;
147 V(2,2) /= norm;
148
149 }
150
151 random_number_pool.free_state(rand_gen);
152 });
153
154}
155
156} // GMLS_LinearAlgebra
157} // Compadre
158
159#endif
160
KOKKOS_INLINE_FUNCTION void largestTwoEigenvectorsThreeByThreeSymmetric(const member_type &teamMember, scratch_matrix_right_type V, scratch_matrix_right_type PtP, const int dimensions, pool_type &random_number_pool)
Calculates two eigenvectors corresponding to two dominant eigenvalues.
Kokkos::Random_XorShift64_Pool pool_type
team_policy::member_type member_type
pool_type::generator_type generator_type
Kokkos::View< double **, layout_right, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_right_type