
T. Austin, S. Kruger, R. Pundaleeka

USING BILDER TO BUILD TRILINOS

 Some people can be overwhelmed with complexity of build systems for

scientific software.

 Building third-party libraries (MPI, lapack, SuperLU) and getting the

dependencies correct can be a nightmare (especially true for Windows).

 Goal is to help you avoid nightmare step by making the build and install

process for Trilinos as easy as possible.

 Let Bilder do all of the work for you so you can solve real problems

rather than getting tangled up in frustrating compiler and library issues.

Goal: Get You to Using Trilinos Today

 It deals with code packages, not code source.

 It is geared to building chains of dependencies of arbitrary length.

 It is cross-platform with no compiler assumptions.

 It is hosted at sourceforge (http://sourceforge.net/p/bilder).

 It is for scientific software

 Fortran is special

 MPI is special

 Handle the diamond-structure dependencies commonly found in

scientific software

 IO libraries (netcdf, HDF5) and math libraries (blas,lapack) are

common dependencies

 It is not a package manager system like Gentoo’s portage or MacPorts.

What is Bilder?
A meta-build system

for scientific software

http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/

Originally developed to solve problems with FACETS:

code-coupling framework in the fusion community

FACETS

UEDGE NUBEAM GYRO

PETSc

…

BLAS/LAPACK NetCDF

MUMPS

HDF5

MPI (openmpi)

Compiler

FACETS really has ~30

packages in it’s build chain

May or may not be part of build chain

Legacy fusion codes:

generally crappy, but contains lots of

knowledge that we want to save

Having individual build systems find

different HDF5 libraries is very bad!

Bilder: Controls the step of building and installing individual packages

 Fetch: Tarball or use repo?

 Tarballs come from “numpkgs” repo at Tech-X

 Preconfig: Do we need to patch for a special system?

 Configure: Install tarballs in one location and repos in another?

 Build: Do we have to do something special?

 Test: Is the build working properly?

 Install: Anything to do afterwards, like fix permissions?

What are the common features in building a

package?

Fetch Preconfig Configure Build Test Install

 Make sure you have your target machine ready:

http://sourceforge.net/p/bilder/wiki/Preparing%20your%20machine%20for%20Bilder/

 Obtain an account on github (open to anyone):

 Make the following calls from the command line (bash shell):

 % git clone https://USERNAME@github.com/Tech-XCorp/trilinosall.git trilinosall

 % cd trilinosall

 % ./externalrepos.sh

 # Obtain a recent version (11.0.3) of Trilinos or get the repo from publicTrilinos

Using Bilder to build Trilinos

Step 1: Setup

http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/
http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/
https://USERNAME@github.com/Tech-XCorp/trilinosall.git
https://USERNAME@github.com/Tech-XCorp/trilinosall.git
https://USERNAME@github.com/Tech-XCorp/trilinosall.git

Using Bilder to build Trilinos

Step 1: Setup

Note: rst2html.py README.rst > README.html generates HTML instructions as

well. See file:///Users/austin/Projects/Trilinos/trilinosall/README.html.

//localhost/Users/austin/Projects/Trilinos/trilinosall/README.html

Packages relevant to Trilinos

Name Version Windows

HDF5 1.8.7-9 Yes

Qt 4.8.1 Yes

Thrust 1.6.0 Yes

Zlib 1.2.6 Yes

PETSc 3.2 or 3.3 Yes

Dakota 5.2 ?

Boost/Boostlib 1_47_0 (1_50_0) Yes

netcdf 4.1.12 Yes

SuperLU 4.1 Yes

SuperLUDist 3.2 Yes

METIS Yes

HYPRE Yes

To see all packages supported: ls bilder/packages

Packages relevant to Trilinos

Packages relevant to Trilinos
superlu.sh

#!/bin/bash

Version

SUPERLU_BLDRVERSION=${SUPERLU_BLDRVERSION:-"4.1"}

Other values

if test -z "$SUPERLU_BUILDS"; then

 SUPERLU_BUILDS=ser,sersh

fi

SUPERLU_DEPS=cmake,atlas,lapack,clapack_cmake

SUPERLU_UMASK=002

Launch superlu builds.

buildSuperlu() {

 if bilderUnpack superlu; then

 if bilderConfig -c superlu ser; then

 bilderBuild superlu ser

 fi

 if bilderConfig superlu sersh “-DBUILD_SHARED_LIBS:BOOL=ON" ; then

 bilderBuild superlu sersh

 fi

 fi

}

.

.

The two main scripts are:

 mktriall.sh

 Main bilder script that fine-tunes many of the build aspects.

 mktriall-default.sh

 Bilder script for handling default parameters for simplifying the builds,

 including the default locations at LCFs.

 For both scripts, ``-h`` or ``--help`` commands will show options.

 To build trilinos with all the default builds and third party dependencies, first

print what the default will do::

 ./mktriall-default.sh –p

Using Bilder to build Trilinos

Step 2: Invoking Bilder

source /Users/austin/Projects/Trilinos/trilinosall/bilder/runnr/runnrfcns.sh

Command is

./mktriall.sh -k /Users/austin/software -i /Users/austin/software –e austin@txcorp.com

runBilderCmd exiting with 0.

• PROJECT_DIR

 This is the directory location of this file.

• INSTALL_DIR

 This is where trilinos will be installed (./mktriall.sh –i INSTALL_DIR)

• CONTRIB_DIR

 This is where TPLs from tarballs will be installed (-k CONTRIB_DIR)

 This may equal the INSTALL_DIR

• BUILD_DIR

 This is where the builds are location (-b BUILD_DIR)

 Typically ``$PROJECT_DIR/builds``

For example, we have by default trilinosall/builds where we would see

SuperLU and SuperLU_Dist builds.

Typically use ~/Software as INSTALL_DIR and CONTRIB_DIR.

Understanding Bilder output:

Terminology

• Key output files:

 $BUILD_DIR/mktriall.log

 $BUILD_DIR/mktriall-summary.txt

 $BUILD_DIR/trilinos-chain.txt

• For each package (e.g., trilinos)

$BUILD_DIR/trilinos/<build>/<hostname>-<pkg>-<build>-

<step>.txt

• E.g., $BUILD_DIR/trilinos/ser/iter.txcorp.com-trilinos-
ser-build.txt

• To debug, it is help to use the scripts that generated the build:

 cd $BUILD_DIR/trilinos/ser

 cat iter.txcorp.com-trilinos-ser-build.txt

 vi iter.txcorp.com-trilinos-ser-build.sh

 iter.txcorp.com-trilinos-ser-build.sh

Understanding Bilder output:

Key files

What is wrong?

Can I fix?

Did it work?

• To set up necessary builds and third party dependencies, create a

configuration file called ``trilinos.conf`` in $PROJECT_DIR

• cp trilinos.conf.example trilinos.conf

• Key variables:

• TRILINOS_BUILDS

 Which types of builds do. Possible choices are ser,par,sersh,parsh

 where the sh suffice refers to shared builds

• TRILINOS_DEPS

 To turn on and off TPL dependencies.

 Needs to be coordinated with TRILINOS_ADDL_ALLARGS potentially

• TRILINOS_ADDL_ALLARGS

 Arguments used by all builds.

 Generally used to turn on and off trilinos packages and TPL.

• TRILINOS_<BUILD>_OTHER_ARGS

 Arguments for the individual builds.

Customizing Trilinos builds

TRILINOS_BUILDS="ser,par”

TRILINOS_DEPS="swig,openmpi,boost,hdf5”

TRILINOS_ADDL_SHARGS="-DTrilinos_ENABLE_Amesos:BOOL=ON"

Sample trilinos.conf

• Bilder has other packages that you may want to build.

• mktriall.sh can take as an argument a different package

• For example, ipython has a pretty long build chain that includes almost

all useful scientific python packages

mktriall-default.sh –n – ipython

 will build the ipython build chain in the default locations

Building other packages

• Bilder is a useful tool for building dependency chains on different

platforms

• We have “bilderized” trilinos to make it easier for people to build the

trilinos build chain

• Customizing your build to choose your dependencies is possible with the

trilinos.conf file

• Bilder documents all the steps thoroughly to allow debugging of any

problems that arise.

• Any problems can be sent to developer@txcorp.com

• We welcome feedback and suggestions for improvements

Conclusions and further work

mailto:developer@txcorp.com

