
T. Austin, S. Kruger, R. Pundaleeka

USING BILDER TO BUILD TRILINOS

 Some people can be overwhelmed with complexity of build systems for

scientific software.

 Building third-party libraries (MPI, lapack, SuperLU) and getting the

dependencies correct can be a nightmare (especially true for Windows).

 Goal is to help you avoid nightmare step by making the build and install

process for Trilinos as easy as possible.

 Let Bilder do all of the work for you so you can solve real problems

rather than getting tangled up in frustrating compiler and library issues.

Goal: Get You to Using Trilinos Today

 It deals with code packages, not code source.

 It is geared to building chains of dependencies of arbitrary length.

 It is cross-platform with no compiler assumptions.

 It is hosted at sourceforge (http://sourceforge.net/p/bilder).

 It is for scientific software

 Fortran is special

 MPI is special

 Handle the diamond-structure dependencies commonly found in

scientific software

 IO libraries (netcdf, HDF5) and math libraries (blas,lapack) are

common dependencies

 It is not a package manager system like Gentoo’s portage or MacPorts.

What is Bilder?
A meta-build system

for scientific software

http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/

Originally developed to solve problems with FACETS:

code-coupling framework in the fusion community

FACETS

UEDGE NUBEAM GYRO

PETSc

…

BLAS/LAPACK NetCDF

MUMPS

HDF5

MPI (openmpi)

Compiler

FACETS really has ~30

packages in it’s build chain

May or may not be part of build chain

Legacy fusion codes:

generally crappy, but contains lots of

knowledge that we want to save

Having individual build systems find

different HDF5 libraries is very bad!

Bilder: Controls the step of building and installing individual packages

 Fetch: Tarball or use repo?

 Tarballs come from “numpkgs” repo at Tech-X

 Preconfig: Do we need to patch for a special system?

 Configure: Install tarballs in one location and repos in another?

 Build: Do we have to do something special?

 Test: Is the build working properly?

 Install: Anything to do afterwards, like fix permissions?

What are the common features in building a

package?

Fetch Preconfig Configure Build Test Install

 Make sure you have your target machine ready:

http://sourceforge.net/p/bilder/wiki/Preparing%20your%20machine%20for%20Bilder/

 Obtain an account on github (open to anyone):

 Make the following calls from the command line (bash shell):

 % git clone https://USERNAME@github.com/Tech-XCorp/trilinosall.git trilinosall

 % cd trilinosall

 % ./externalrepos.sh

 # Obtain a recent version (11.0.3) of Trilinos or get the repo from publicTrilinos

Using Bilder to build Trilinos

Step 1: Setup

http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/
http://sourceforge.net/p/bilder/wiki/Preparing your machine for Bilder/
https://USERNAME@github.com/Tech-XCorp/trilinosall.git
https://USERNAME@github.com/Tech-XCorp/trilinosall.git
https://USERNAME@github.com/Tech-XCorp/trilinosall.git

Using Bilder to build Trilinos

Step 1: Setup

Note: rst2html.py README.rst > README.html generates HTML instructions as

well. See file:///Users/austin/Projects/Trilinos/trilinosall/README.html.

//localhost/Users/austin/Projects/Trilinos/trilinosall/README.html

Packages relevant to Trilinos

Name Version Windows

HDF5 1.8.7-9 Yes

Qt 4.8.1 Yes

Thrust 1.6.0 Yes

Zlib 1.2.6 Yes

PETSc 3.2 or 3.3 Yes

Dakota 5.2 ?

Boost/Boostlib 1_47_0 (1_50_0) Yes

netcdf 4.1.12 Yes

SuperLU 4.1 Yes

SuperLUDist 3.2 Yes

METIS Yes

HYPRE Yes

To see all packages supported: ls bilder/packages

Packages relevant to Trilinos

Packages relevant to Trilinos
superlu.sh

#!/bin/bash

Version

SUPERLU_BLDRVERSION=${SUPERLU_BLDRVERSION:-"4.1"}

Other values

if test -z "$SUPERLU_BUILDS"; then

 SUPERLU_BUILDS=ser,sersh

fi

SUPERLU_DEPS=cmake,atlas,lapack,clapack_cmake

SUPERLU_UMASK=002

Launch superlu builds.

buildSuperlu() {

 if bilderUnpack superlu; then

 if bilderConfig -c superlu ser; then

 bilderBuild superlu ser

 fi

 if bilderConfig superlu sersh “-DBUILD_SHARED_LIBS:BOOL=ON" ; then

 bilderBuild superlu sersh

 fi

 fi

}

.

.

The two main scripts are:

 mktriall.sh

 Main bilder script that fine-tunes many of the build aspects.

 mktriall-default.sh

 Bilder script for handling default parameters for simplifying the builds,

 including the default locations at LCFs.

 For both scripts, ``-h`` or ``--help`` commands will show options.

 To build trilinos with all the default builds and third party dependencies, first

print what the default will do::

 ./mktriall-default.sh –p

Using Bilder to build Trilinos

Step 2: Invoking Bilder

source /Users/austin/Projects/Trilinos/trilinosall/bilder/runnr/runnrfcns.sh

Command is

./mktriall.sh -k /Users/austin/software -i /Users/austin/software –e austin@txcorp.com

runBilderCmd exiting with 0.

• PROJECT_DIR

 This is the directory location of this file.

• INSTALL_DIR

 This is where trilinos will be installed (./mktriall.sh –i INSTALL_DIR)

• CONTRIB_DIR

 This is where TPLs from tarballs will be installed (-k CONTRIB_DIR)

 This may equal the INSTALL_DIR

• BUILD_DIR

 This is where the builds are location (-b BUILD_DIR)

 Typically ``$PROJECT_DIR/builds``

For example, we have by default trilinosall/builds where we would see

SuperLU and SuperLU_Dist builds.

Typically use ~/Software as INSTALL_DIR and CONTRIB_DIR.

Understanding Bilder output:

Terminology

• Key output files:

 $BUILD_DIR/mktriall.log

 $BUILD_DIR/mktriall-summary.txt

 $BUILD_DIR/trilinos-chain.txt

• For each package (e.g., trilinos)

$BUILD_DIR/trilinos/<build>/<hostname>-<pkg>-<build>-

<step>.txt

• E.g., $BUILD_DIR/trilinos/ser/iter.txcorp.com-trilinos-
ser-build.txt

• To debug, it is help to use the scripts that generated the build:

 cd $BUILD_DIR/trilinos/ser

 cat iter.txcorp.com-trilinos-ser-build.txt

 vi iter.txcorp.com-trilinos-ser-build.sh

 iter.txcorp.com-trilinos-ser-build.sh

Understanding Bilder output:

Key files

What is wrong?

Can I fix?

Did it work?

• To set up necessary builds and third party dependencies, create a

configuration file called ``trilinos.conf`` in $PROJECT_DIR

• cp trilinos.conf.example trilinos.conf

• Key variables:

• TRILINOS_BUILDS

 Which types of builds do. Possible choices are ser,par,sersh,parsh

 where the sh suffice refers to shared builds

• TRILINOS_DEPS

 To turn on and off TPL dependencies.

 Needs to be coordinated with TRILINOS_ADDL_ALLARGS potentially

• TRILINOS_ADDL_ALLARGS

 Arguments used by all builds.

 Generally used to turn on and off trilinos packages and TPL.

• TRILINOS_<BUILD>_OTHER_ARGS

 Arguments for the individual builds.

Customizing Trilinos builds

TRILINOS_BUILDS="ser,par”

TRILINOS_DEPS="swig,openmpi,boost,hdf5”

TRILINOS_ADDL_SHARGS="-DTrilinos_ENABLE_Amesos:BOOL=ON"

Sample trilinos.conf

• Bilder has other packages that you may want to build.

• mktriall.sh can take as an argument a different package

• For example, ipython has a pretty long build chain that includes almost

all useful scientific python packages

mktriall-default.sh –n – ipython

 will build the ipython build chain in the default locations

Building other packages

• Bilder is a useful tool for building dependency chains on different

platforms

• We have “bilderized” trilinos to make it easier for people to build the

trilinos build chain

• Customizing your build to choose your dependencies is possible with the

trilinos.conf file

• Bilder documents all the steps thoroughly to allow debugging of any

problems that arise.

• Any problems can be sent to developer@txcorp.com

• We welcome feedback and suggestions for improvements

Conclusions and further work

mailto:developer@txcorp.com

