A new MATLAB interface to MueLu

Tobias Wiesner Jonathan Hu Brian Kelley Chris Siefert

Sandia National Labs

October 27, 2015

SAND2015-9327 PE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXP

MATLAB is registered trademark of The MathWorks, Inc.

MATLAB is registered trademark of The MathWorks, Inc.

Chris Siefert

Brian Kelley

MueMex = MATLAB interface for MueLu

MueLu is . . .

... the next-generation multigrid framework package in Trilinos.

- provides AMG methods to solve large linear systems of equations
- can be understood as successor but not replacement for ML
- supports both Epetra and Tpetra as linear algebra framework
- is the typical Trilinos package

MueLu is . . .

... the next-generation multigrid framework package in Trilinos.

- provides AMG methods to solve large linear systems of equations
- can be understood as successor but not replacement for ML
- supports both Epetra and Tpetra as linear algebra framework
- is the typical Trilinos package
 - makes heavy use of other Trilinos packages

(thanks to the Amesos2, Ifpack2, Zoltan2, Tpetra, Epetra, Kokkos, . . . developers)

MueLu is . . .

... the next-generation multigrid framework package in Trilinos.

- provides AMG methods to solve large linear systems of equations
- can be understood as successor but not replacement for ML
- supports both Epetra and Tpetra as linear algebra framework
- is the typical Trilinos package
 - makes heavy use of other Trilinos packages
 - (thanks to the Amesos2, Ifpack2, Zoltan2, Tpetra, Epetra, Kokkos, . . . developers)
 - runs on usual laptops, super-computers and (soon) next-generation HPC systems

MueLu is . . .

... the next-generation multigrid framework package in Trilinos.

- provides AMG methods to solve large linear systems of equations
- can be understood as successor but not replacement for ML
- supports both Epetra and Tpetra as linear algebra framework
- is the typical Trilinos package
 - makes heavy use of other Trilinos packages

(thanks to the Amesos2, Ifpack2, Zoltan2, Tpetra, Epetra, Kokkos, . . . developers)

- runs on usual laptops, super-computers and (soon) next-generation HPC systems
- MueLu is international: we can give support in

Main idea

Two main components

Smoothers

- Approximate solve on each level
- ``Cheap'' reduction of oscillatory error (high energy)
- $\mathcal{S}_L pprox A_L^{-1}$ on the coarsest level L

 \mathcal{S}_2

Main idea

Two main components

Smoothers

- Approximate solve on each level
- ``Cheap'' reduction of oscillatory error (high energy)
- $\mathcal{S}_L pprox A_L^{-1}$ on the coarsest level L
- Grid transfers (prolongators and restrictors)
 - Data movement between levels
 - Definition of coarse level matrices.

Main idea

Algorithmic phases

- Setup phase
 - Build transfer operators to determine coarse level matrices
 - Initialize level smoothers

Main idea

Algorithmic phases

Setup phase

- Build transfer operators to determine coarse level matrices
- Initialize level smoothers

Main idea

Algorithmic phases

• Setup phase

- Build transfer operators to determine coarse level matrices
- Initialize level smoothers
- Solving phase
 - Run through multigrid cycle (e.g. V-cycle)
 - Iteratively solve linear system or apply some sweeps with multigrid as preconditioner within an iterative linear solver

Main idea

Sandia National Laboratories

What can MueLu provide for MATLAB?

What can MueLu provide for MATLAB?

- MueMex runs MueLu as preconditioner in Belos
 - Access to all features of Belos (linear solvers, multiple RHS. . .).
 - Access to all preconditioners from Trilinos through MueLu

What can MueLu provide for MATLAB?

- MueMex runs MueLu as preconditioner in Belos
 - Access to all features of Belos (linear solvers, multiple RHS. . .).
 - Access to all preconditioners from Trilinos through MueLu
- Efficient iterative solution of very large linear systems
 - Run MueLu multigrid setup once
 - Use multigrid hierarchy for solving several (similar) linear systems with varying linear operators and/or right hand sides.

What can MueLu provide for MATLAB?

- MueMex runs MueLu as preconditioner in Belos
 - Access to all features of Belos (linear solvers, multiple RHS. . .).
 - Access to all preconditioners from Trilinos through MueLu
- Efficient iterative solution of very large linear systems
 - Run MueLu multigrid setup once
 - Use multigrid hierarchy for solving several (similar) linear systems with varying linear operators and/or right hand sides.

Why is MATLAB useful for MueLu?

What can MueLu provide for MATLAB?

- MueMex runs MueLu as preconditioner in Belos
 - Access to all features of Belos (linear solvers, multiple RHS. . .).
 - Access to all preconditioners from Trilinos through MueLu
- Efficient iterative solution of very large linear systems
 - Run MueLu multigrid setup once
 - Use multigrid hierarchy for solving several (similar) linear systems with varying linear operators and/or right hand sides.

Why is MATLAB useful for MueLu?

• Analyze and tweak multigrid methods using the full functionality of MATLAB.

What can MueLu provide for MATLAB?

- MueMex runs MueLu as preconditioner in Belos
 - Access to all features of Belos (linear solvers, multiple RHS. . .).
 - Access to all preconditioners from Trilinos through MueLu
- Efficient iterative solution of very large linear systems
 - Run MueLu multigrid setup once
 - Use multigrid hierarchy for solving several (similar) linear systems with varying linear operators and/or right hand sides.

Why is MATLAB useful for MueLu?

- Analyze and tweak multigrid methods using the full functionality of MATLAB.
- Perform basic research on multigrid methods for specific problems.

1. How to use MueMex

Basic Laplace example – Setup

Define problem:

```
1 >> [A, coords] = laplacianfun([50, 50]);
```


Basic Laplace example - Setup

Define problem:

```
>> [A, coords] = laplacianfun([50, 50]);
```

```
Multigrid setup:
```

1

Minimal setup: Use default parameters defined by MueLu

1 >> [problemID, oc] = muelu('setup', A);

Basic Laplace example - Setup

Define problem:

>> [A, coords] = laplacianfun([50, 50]);

```
Multigrid setup:
```

1

Minimal setup: Use default parameters defined by MueLu

1 >> [problemID, oc] = muelu('setup', A);

Multigrid parameters: Provide user parameters (see MueLu user guide)

```
1 >> [problemID, oc] = muelu('setup', A, 'coarse: max
size', 50);
```


Basic Laplace example - Setup

Define problem:

```
>> [A, coords] = laplacianfun([50, 50]);
```

```
Multigrid setup:
```

1

Minimal setup: Use default parameters defined by MueLu

1 >> [problemID, oc] = muelu('setup', A);

Multigrid parameters: Provide user parameters (see MueLu user guide)

```
1 >> [problemID, oc] = muelu('setup', A, 'coarse: max
size', 50);
```

XML parameter file: Provide user parameters through xml file

```
1 [problemID, oc] = muelu('setup', A, 'xml parameter
file', 'myParams.xml');
```

📣 💿 MATLAB 7.11.0 (R2010b)	
Eile Edit Debug Parallel Desktop Wir	idow Help
🔁 😂 🕷 🕫 🕫 🖉 🖻 🗎	🛿 Current Folder: /home/tobias/promotion/trilinos-mex/packages/muelu/matlab/bin
Shortcuts 🗈 How to Add 💽 What's New	
Current Folder 🗰 🖛 🛪	Command Window 💛 🗆 * 🗙
w matab > bin > + P > * P Name 4 Name 4 Farts Grave Crashes Grave Crashes	Prant ≠ roms par proc : avg = 5.40e+01, dev = 0.0%, sin = +0.0%, ax = +0.0% Prant ≠ nos par proc : avg = 5.40e+01, dev = 0.0%, sin = +0.0%, ax = +0.0% Eigenvalue estimate (aclulating max eigenvalue estimate now (max iters = 10) Prolongator damping factor = 0.97 (1.33 / 1.38) Fused (1-casela ¹⁰ (-1.1) A/Ptent P size = 54 × 8, nnz = 127 P Load balancing info P ≠ active processes: 1/1 R size = 8 × 54, nnz = 127 R Load balancing info R ≠ active processes: 1/1 R ± 20 × 54 × 65, 100 × 100
i mymatiao ∰ setup.m	R # rows per proc : avg = 8.00e+00, dev = 0.0%, min = 40.0%, max = 40.0% R # nng per proc : avg = 1.27e02, dev = 0.0%, min = 40.0%, max = 40.0% Computing Ac (Muelus:RAFFmattry) Medri Av product moz per row estimate = 9 Matrix product moz per row estimate = 30 Ac size = 8 × 8, nnz = 44 Ac Load balancing info Ac # active processes: 1/1 Ac # active processes: 1/1 Ac # active processes: 1/2 Ac # nnz per proc : avg = 4.00e+00, dev = 0.0%, min = 40.0%, max = 40.0% Ac # nnz per proc : avg = 4.40e+01, dev = 0.0%, min = +0.0%, max = 40.0% Ac # nnz per proc : avg = 4.40e+01, dev = 0.0%, min = +0.0%, max = 40.0% Ac # nnz per proc : avg = 4.40e+01, dev = 0.0%, min = +0.0%, max = 40.0% Ac # nnz per proc : avg = 4.40e+01, dev = 0.0%, min = +0.0%, max = 40.0%
	Multiprid Summary Number of levels = 4 Operator conflexity 1.33 level rows nnz nnz/row c ratio 0 2500 12300 4.92 1 425 2531 8.45 2 54 3 8 44 5.50 3 8 44 5.50 3 8 44 5.50 1 76n42' 1 76n4' 1 76n4' 1 76n4' 2 54 3 8 44 5.50 6.75 1 3 8 44 5.50 5.75 1
Tests (File Folder)	Swother (level 1) both : "Ifpack2::Relaxation": (Initialized: true, Computed: true, Type: Symetric Gauss- Souther (level 1) both : "Ifpack2::Relaxation": (Initialized: true, Computed: true, Type: Symetric Gauss- Souther (level 1) both : "Ifpack2::Relaxation": (Initialized: true, Computed: True, Type: Symetric Gauss-
No details available	Soother (level 3) per 2. SuperLU solver interface, direct solve Soother (level 3) pest : no socher Soother (level 3) post : no socher
	fx≫ [problemID, oc] = muelu('setup', A, 'coarse: max size', 50);

Basic Laplace example - Solve

Solve problem:

```
>> b = ones(2500, 1);
```

```
1
```

```
>> [x, numIters] = muelu(problemID, b);
```

MATLAB output:

```
>> [x, numIters] = muelu(problemID, b);
***** Belos Iterative Solver. Pseudo Block Gmres
***** Maximum Tterations: 1000
***** Block Size: 1
***** Residual Test:
     Test 1 : Belos::StatusTestImpResNorm<>: (2-Norm Res Vec) / (2-Norm Prec Res0), tol = 1e-08
*********
     0, [ 1] : 1.000000e+00
Tter
    1, [ 1] : 5.608530e-01
Iter
     2, [1]:
Tter
                 1.953063e-02
     3, [1]:
                 1.303521e-03
Iter
Iter
     4. [1]:
                 7.361411e-05
Iter
     5, [1]:
                 4.277384e-06
Iter
     6. [1]:
                 2.581678e-07
     7. [1]:
                 1.169750e-08
Iter
       8, [1]:
                  7.920252e-10
Tter
Success, Belos converged!
```

Basic Laplace example - Analysis

Visualize solution and error:

1

```
>> plot3(coords(:,1),coords(:,2),x,'.')
```

```
>> plot3 (coords (:, 1), coords (:, 2), x-A\b, 'r.')
```


Basic Laplace example - Analysis

Visualize solution and error:

1

```
>> plot3(coords(:,1),coords(:,2),x,'.')
>> plot3(coords(:,1),coords(:,2),x-A\b,'r.')
```


Complex scalars

MueLu also works with complex scalars:

```
>> A = gallery(`tridiag`,2500,-1.0,2.0,-1.0) + gallery(`tridiag
`,2500,-100.0,200.0,-100.0) * i;
```

>> [p,oc] = muelu('setup',A);

MATLAB output:

1

Multigrid Summary		
Number of levels = 2		
Operator complexity = 1.33		
level rows nnz nnz/row c ratio procs		
0 2500 7498 3.00 1		
1 834 2500 3.00 3.00 1		
Smoother (level 0) both : "Ifpack2::Relaxation":		
{Initialized: true, Computed: true,		
Type: Symmetric Gauss-Seidel,		
sweeps: 1, damping factor: (1,0),		
Global matrix dimensions: [2500, 2500],		
Global nnz: 7498}		
Smoother (level 1) pre : SuperLU solver interface, direct solve		
Smoother (level 1) post : no smoother		
Set up problem #0		

Multiple right-hand sides

MueLu can solve multiple right-hand sides:

```
>> b = ones(2500,2);
>> for j = 1:2500, b(j,2) = 1/2500*j + 1/(2500*2500)*j.*j*i; end
```

```
>> [x,numIters] = muelu(p,b);
```

1

2

3

MATLAB output:

```
*******
***** Belos Iterative Solver: Pseudo Block Gmres
***** Maximum Iterations: 1000
***** Block Size: 1
   * Residual Test:
     Test 1 : Belos::StatusTestImpResNorm<>: (2-Norm Res Vec) / (2-Norm Prec Res0), tol = 1e-08
*****
    0, [ 1] :
                1.000000e+00 Iter
                                    0, [ 2] :
                                                1.000000e+00
Tter
    2, [ 1] : 1.592409e-01 Iter
                                   2, [ 2] : 1.414063e-01
Iter
Iter
    4, [ 1] : 8.602037e-05 Iter 4, [ 2] : 7.553543e-05
    6, [ 1] : 4.425200e-08 Iter 6, [ 2] : 3.866241e-08
Tter
Tter
    7, [ 1] :
               1.070092e-09 Iter 7, [ 2] : 9.321384e-10
Success, Belos converged!
```


Multiple right-hand sides

MueLu can solve multiple right-hand sides:

```
>> b = ones(2500,2);
>> for j = 1:2500, b(j,2) = 1/2500*j + 1/(2500*2500)*j.*j*i; end
>> [x,numIters] = muelu(p,b);
```

2 3

1

MATLAB output:

```
**** Belos Iterative Solver: Pseudo Block Gmres
***** Maximum Iterations: 1000
   * Block Size 1
   * Residual Test:
      Test 1 : Belos::StatusTestImpResNorm<>: (2-Norm Res Vec) / (2-Norm Prec Res0), tol = 1e-08
*****
     0, [ 1] :
                  1.000000e+00 Iter
                                       0, [ 2] :
                                                    1.000000e+00
Tter
    2, [ 1] :
                 1.592409e-01 Iter
                                       2, [ 2] :
                                                  1.414063e-01
Iter
                                      4. [ 2] :
Iter
    4. [ 1] :
                 8.602037e-05 Iter
                                                  7.553543e-05
     6. [ 1] :
                 4.425200e-08 Iter
                                      6, [ 2] :
                                                  3.866241e-08
Tter
       7, [ 1] :
                 1.070092e-09 Iter
                                      7, [ 2] :
                                                  9.321384e-10
Tter
Success, Belos converged!
```

Attention:

If the hierarchy is built with a complex operator A, the RHS vector has to contain at least one imaginary value!

Tobias Wiesner

Results

Visualization of results in MATLAB:

```
1
2
3
```

>> plot(real(x(:,1))); hold on; plot(real(x(:,2))); >> plot(imag(x(:,1))); plot(imag(x(:,2))); hold off;

```
>> plot (imag(A b - x));
```

Plot of solution vector:

Plot of imaginary part of error:

2. How to access MueLu data

Study multigrid methods

Example: Study the multigrid effect on a 1d example:

```
>> A = gallery('tridiag',600,-1,2,-1);
>> b=ones(600,1);
>> [problemID,oc] = muelu('setup',A,'coarse: max size',50,'
multigrid algorithm','unsmoothed');
```

MATLAB output:

1

2

3

Multigrid Summary Number of levels = 4 Operator complexity = 1.48 level rows nnz nnz/row c ratio procs 0 600 1798 3.00 1 200 598 2.99 3.00 1 2 67 199 2.97 2.99 1 3 23 67 2.91 2.91 1

How to access transfer operators?

Extract (non-smooth) prolongation operators:

```
>> Ptent1 = muelu('get', problemID, 1, 'P');
>> Ptent2 = muelu('get', problemID, 2, 'P');
>> Ptent3 = muelu('get', problemID, 3, 'P');
>> plot(Ptent3(:,15)); hold on; plot(Ptent3(:,15),'o');
```

Plot of non-smooth basis function #15 of Ptent3:

1

2

3

How to access coarse level operators?

Extract coarse level operator on level 3 and solve coarse level problem using MATLAB:

```
1 >> b1=Ptent1'*b;
2 >> b2=Ptent2'*b1;
3 >> b3=Ptent3'*b2;
4 >>
5 >> A3 = muelu('get',
problemID, 3, 'A');
```

```
_{7} >> x3 = A3 \setminus b3;
```

6 >>

Plot of coarse level solution (level 3):

```
>> plot(x3); hold on;
```


Exact coarse level solution of fine level problem.

Fine level solution and level smoothing

Plot prolongated solution on level 2:

```
1 >> x2p = Ptent3 * x3;
```

- 2 >> plot(x2p); hold on;
- 3 >> plot(x2p,'o'); hold off;

Apply one sweep with Jacobi to prolongated solution:

1	>> A2 = muelu('get',
	<pre>problemID, 2, 'A');</pre>
2	>> $T = inv(D) * (tril(-A2)$
	,-1)+triu(-A2,1));
3	>> x2s = T * x2p + inv(D) *
	b2;
4	>> plot(x2s); hold on; plot(
	<pre>xs2,'o'); hold off;</pre>

2D example – default parameters

Visualize transfer operator basis functions of 2D Laplace problem:

```
1 >> [A, coords] = laplacianfun([50 50]);
2 >> [problemID] = muelu('setup', A);
3 >> P1 = muelu('get', problemID, 1, 'P');
4 >> [X,Y]=meshgrid(coords(:,1),coords(:,2));
5 >> Z = griddata(coords(:,1),coords(:,2),full(P1(:,212)),X, Y);
6 >> surf(X,Y,Z);
```

Plot of *smooth* prolongator basis function (associated with aggreate 212):

Tobias Wiesner

2D example - non-smooth transfers

Comparison of *smooth* prolongator basis function (associated with aggreate 212) and non-smooth basis function (associated with aggregate 234):

3. Where can i learn more about MueLu?

MueLu resources

• The MueLu user guide

- can be found here: https://trilinos.org/packages/muelu/muelu-documentation/
- serves as reference handbook
- provides an overview of all available user parameters and basic examples
- Examples come with the MueLu sources in the <code>examples</code> folder
- Doxygen

The MueLu tutorial

- can be found here: www.trilinos.org/packages/muelu/muelu-tutorial
- comes with an interactive GUI for individual experiments
- no Trilinos installation necessary: we provide a VirtualBox image and a docker container
- The MueLu tutorial is divided into
 - The beginners tutorial: Chapters 1-5 meant for absolute multigrid beginners. No programming skills necessary. Explains basic usage for standard problems.
 - The advanced tutorial: Chapters 6-11 meant for intermediate users of MueLu. Explains design concepts of MueLu and focuses on advanced use concepts.
 - Expert topics: Chapters 12-end cover expert topics primarily for developers.

Conclusion

- MueMex: MATLAB interface for MueLu
- allows to use MueLu as solver within MATLAB
- provides easy access to MueLu internals for further analysis
- works also for complex problems and multiple RHS
- ideal tool for research in context of multigrid
 - no C++ knowledge necessary
 - rapid development (no compilation necessary)
 - perfect tool for quick experiments and parameter studies
- MueMex is still under heavy development

One more thing. . .

MueMex – MATLAB extensions for MueLu

- Advanced software design principles of MueLu
 - Flexibility through modularity: multigrid framework
 - Strict splitting of algorithms and data
 - Algorithms are implemented in *factories* which use some input data to calculate/generate some other output data
- MueMex fully integrates in MueLu framework
 - Use callback mechanism to allow to plug in new factories in MueLu written in MATLAB
 - MueMex factories have full access to MueLu framework
 - MueMex factories can use full power of MATLAB

Demonstration

Use monochrome picture data to drop entries in input graph of aggregation factory to enforce user-specified aggregates:

Demonstration

• Write a factory in MATLAB which uses

- ${\ensuremath{\, \bullet }}$ the non-filtered matrix A as input
- drops all off-diagonal entries in A which represent connections between color 1 (e.g. blue) and color 2 (e.g. white).
- $\bullet\,$ stores the filtered matrix A for being used in aggregation algorithm
- transfer monochrome picture data accordingly to coarse level (this is optional if only two-level method is used)
- XML file controls the interconnection and dependencies of factories
 - MATLAB factories fully integrate in existing MueLu framework with all factories written in C++/MATLAB
 - optimal flexibility
 - recombination and reuse of factories without recompilation of source code
 - perfect tool to design new application-specific preconditioning strategies

One last thing. . .

Thanks

Thank you for your attention

Special thanks go to

- the MueMex developers, especially
 - Brian Kelley
 - Chris Siefert
- the MueLu developers, especially
 - Jonathan Hu
 - Andrey Prokopenko
 - Jeremie Gaidamour
- the developers of
 - Amesos and Amesos2
 - Ifpack and Ifpack2
 - Zoltan and Zoltan2
 - Epetra and Tpetra
- all Trilinos developers in general

