Parallel multilevel incomplete factorization of saddle point matrices

Jonas Thies* and Fred W. Wubs†

* Centre for Interdisciplinary Mathematics
 Uppsala University, Sweden
 jonas@math.uu.se

† Computational Mechanics & Numerical Mathematics
 University of Groningen, the Netherlands
 f.w.wubs@rug.nl

Euro-TUG 2012
Lausanne June 4-6
Outline

1. Objectives
2. Numerical methods
3. Robust ILU for Navier-Stokes on structured grids
4. The HYbrid Multi-Level Solver HYMLS
5. Augmented (‘bordered’) systems
6. Outlook and conclusions
Objectives

Numerical methods
Robust ILU for Navier-Stokes on structured grids
The HYbrid Multi-Level Solver HYMLS
Augmented ('bordered') systems
Outlook and conclusions
Bifurcations and instabilities in fluid dynamics

- understand the physics of a flow
- time integration gives a glance at a point in parameter space
- we want to traverse parameter space and find interesting points
- our applications: transition to turbulence, climate change
Benchmark problems

1. 3D Lid Driven Cavity

2. Boussinesq on the Globe. Domain from 60 degrees N Lat. to 60 degrees S Lat. Continent modelled by one line going from the north pole to 50 degrees S Lat. Depth 4000m.

 Numerical ingredients: continuation of steady states and periodic solutions (LOCA), nonlinear equations (NOX), eigenvalue problems (Jacobi-Davidson).

 Key challenge: efficient solution of large sparse linear systems.
Numerical methods
Fully coupled fully implicit approach

Incompressible Navier-Stokes equations:

\[
\frac{\partial \bar{u}}{\partial t} + \mathbf{N}(\bar{u}, \bar{u}) + \mathbf{L}\bar{u} + \nabla \mathbf{p} = 0 \\
\nabla \cdot \bar{u} = 0
\]

- Discretize (here second order symmetry-preserving finite differences on C-grid)
- Linearize by Newton’s method
- Structure of resulting linear systems (Saddle-point matrix):

\[
\begin{pmatrix}
\mathbf{L} + \mathbf{N} & \mathbf{Grad} \\
\mathbf{Div} & 0
\end{pmatrix}
\begin{pmatrix}
\bar{u} \\
\mathbf{p}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{f}\bar{u} \\
\mathbf{f}\mathbf{p}
\end{pmatrix}
\]

(1)
Numerical continuation methods

- Nonlinear system of equations: \(F(x, p) = 0 \)
 - \(F : \mathbb{R}^{n+p} \rightarrow \mathbb{R}^n \): nonlinear function,
 - \(x \in \mathbb{R}^n \) state vector,
 - \(p \in \mathbb{R}^d \) parameter vector.

- Pseudo-arclength method:
 - Arc-length parameter \(s \), choose parameter \(\eta = \eta(s) \in p \);
 - \(\Rightarrow \) branch of solutions \(x_k, \eta(s_k) \).
 - Need an additional equation: normalize tangent
 \[
 \dot{x}_k^T (x - x_k) + \dot{\eta}_k (\eta - \eta_k) - \Delta s_k^2 = 0.
 \]
 - Predictor-Corrector scheme using Tangent and Newton’s, resp.

- \(\Rightarrow \) Linear systems with the Jacobian
 \[J = \begin{pmatrix}
 \Phi & F_{\eta} \\
 \dot{x}_k^T & \dot{\eta}_k
 \end{pmatrix}. \]
FVM: our new package for constructing Φ and $F(x, p)$

- read XML input file
- domain decomposition: create Epetra_Map
- one or two layers of overlap...
- \Rightarrow can build Φ and F on each subdomain
- Fortran API for doing this (application scientist has to fill a stencil array in Fortran, all MPI hidden)
- NOX/LOCA interface defined once for all our test cases
Direct vs. iterative linear solvers

<table>
<thead>
<tr>
<th>Sparse Direct</th>
<th>Preconditioned Iterative</th>
</tr>
</thead>
<tbody>
<tr>
<td>robust and easy to use</td>
<td>usually not robust, depend on many parameters</td>
</tr>
<tr>
<td>comput. complexity $O(N^2)$ in 3D (N: number of unknowns)</td>
<td>can have optimal complexity $O(N)$</td>
</tr>
<tr>
<td>substantial fill-in $O(N^{4/3})$</td>
<td>save memory + CPU time by avoiding fill-in</td>
</tr>
</tbody>
</table>

Can we combine the best of both?
→ ILU close to LU and preserve properties
popular methods for $Ax=b$

- sparse direct (robust, only feasible in 2D)
- Krylov methods - require robust preconditioning
- Plenty of methods for elliptic PDEs:
 - FFT (Poisson, structured grid)
 - Geometric Multigrid (structured grid)
 - Algebraic Multigrid
 - Fast Multipole for particle dynamics and Maxwell equations

There is no fast algorithm for (Navier-)Stokes in 3D!
‘Physics-based’ Schur-complement preconditioners

- use simplified \(\tilde{K} \approx K \) as preconditioner
- \(\tilde{K} \) typically involves Poisson- or convection-diffusion like systems that are solved using multigrid;
- for instance:

\[
\tilde{K} = \begin{bmatrix}
A & O \\
D & \hat{S}
\end{bmatrix}
\]

where \(A = -\frac{1}{Re} L + N \).

The Schur-complement \(S = -DAG \) is dense, so it has to be approximated somehow by \(\hat{S} \) in the preconditioner.
Drawbacks of block preconditioners

- System split into velocity and pressure globally
- Artificial pressure boundary conditions
- Choice of \tilde{C} very hard for high Reynolds Numbers
- Nested iterations
- How to choose ‘inner’ convergence criteria?
- No notion of a ‘coarse grid’ as in multigrid for elliptic PDEs
- Adding e.g. heat transfer is typically not feasible (multi-block matrices)

\implies Not a good option for transition to turbulence and multi-physics problems
Robust ILU for Navier-Stokes on structured grids
Ingredients for effective and robust incomplete factorization

- Eliminate velocity and pressure nodes together
- Fill reducing ordering
- Fourier-like transformation
 - improves diagonal dominance
 - to get rid of unwanted couplings
- Drop by retaining principal submatrices
 - these submatrices will be positive definite if the matrix is positive definite
- For incompressible Navier Stokes equation, do not drop in divergence and gradient part
 - There is no increase of fill in this part (not even in direct method) on C-grid
Trilinos usage

- NOX/LOCA for nonlinearity
- implements Ifpack_Preconditioner
- uses Ifpack_Container class (sparse and dense)
- own interface to KLU for subdomains
- Amesos on coarsest level
- heavy use of Epetra, EpetraExt and Teuchos
A cartoon of the new algorithm

Stokes on a structured C-grid
A cartoon of the new algorithm, step 1

Domain decomposition
A cartoon of the new algorithm, step 2

Identify separators
A cartoon of the new algorithm, step 3

Elimination yields ‘geometric’ Schur-complement
Flux representation (‘coarse grid’)
A saddle point matrix has the following structure:

\[K = \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix}. \] (2)

Definition 1
A gradient-type matrix has at most two nonzero entries per row and its row sum is zero.

Definition 2
A saddle point matrix (2) is called an F-matrix if A is positive definite and B is a gradient-type matrix.

The Jacobian of the Stokes equations ($Re \to 0$) on a C-grid is an F-matrix.
Computing an LU decomposition of an \mathcal{F}-matrix

\[
\begin{bmatrix}
 A & B \\
 B^T & 0
\end{bmatrix}
\begin{bmatrix}
 x_v \\
 x_p
\end{bmatrix}
=
\begin{bmatrix}
 f_v \\
 f_p
\end{bmatrix}
\]

\(V - \text{nodes}\) \(P - \text{nodes}\)

Algorithm: LU decomposition of an \mathcal{F}-matrix.

- Compute a fill-reducing ordering for the graph $F(A) \cup F(BB^T)$,
- during Gaussian elimination, insert the P-nodes to form 2×2 pivots whenever a coupling between a V-node and a P-node is encountered.

Theorem 1

In every step of the above algorithm, the resulting Schur complement is an \mathcal{F}-matrix.
How is fill generated in the direct approach?

\[\begin{bmatrix}
\alpha & \beta & a^T & b^T \\
\beta & 0 & \hat{b}^T & 0 \\
a & \hat{b} & \hat{A} & \hat{B} \\
b & 0 & \hat{B}^T & O
\end{bmatrix} \]

Elimination step:
- Multiple of $\hat{b}\hat{b}^T$ is added to \hat{A};
- \hat{b} becomes denser as P-nodes are eliminated;
- So dropping in \hat{A} doesn’t make sense.
Subdomains and ‘separator groups’;
Retain one pressure per subdomain.

This ordering exposes parallelism in the matrix:

\[K \Rightarrow \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}, \]

where \(K_{11} \) is block-diagonal.
The Schur complement

- **LU-decomposition of the matrices on the subdomains**, $K_{11} = L_{11} U_{11}$;
- **Schur-complement**: $S = K_{22} - K_{21} K_{11}^{-1} K_{12}$;
- S retains structural and numerical properties of K;
- S has only a few rather dense `B' columns (with at most two entries per row);
- Solve the system with S by a preconditioned Krylov subspace method.
How can we maintain sparsity?

- Still an \mathcal{F}-matrix;
- All V-nodes on a separator are now connected to the same 2 P-nodes;
- Use orthogonal transformation to disconnect them.
How can we maintain sparsity?

- Still an F-matrix;
- All V-nodes on a separator are now connected to the same 2 P-nodes;
- Use orthogonal transformation to disconnect them.

⇒ Only one V-node per separator remains connected to P-nodes (V_Σ-nodes)
Dropping

- Use simple drop-by-position:
 - Drop all couplings between separator groups
 - ... and all couplings between V_Σ and regular V-nodes.
Dropping

- Use simple drop-by-position:
 - Drop all couplings between separator groups
 - ... and all couplings between V_Σ and regular V-nodes.

\rightarrow Block diagonal preconditioner with a ‘reduced matrix’ S_2 in the lower right.
why it works

- **Orthogonal transformations:**
 - Eliminate most V-P couplings to avoid fill;
 - ‘Transfer operators’ defining coarse problem S_2.

- **Coarse problem S_2:** solve for flux V_Σ through each separator;
 - Still an F-matrix in case of the Stokes equations;

- **Constraint preconditioning:**
 - no approximations in ‘Grad’ or ‘Div’ part;
 - mass is conserved exactly throughout.

- **Drop-by-position**
 - original properties preserved (symmetry, positiveness);
 - singular subsystems cannot occur.

- **No segregation of variables:**
 - velocity and pressure kept together;
 - no nested iterations.
Stokes equations: relative fill

2D Stokes-C: fill-in

- iterative (subdomain size 8x8)
- iterative (subdomain size 16x16)

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>16x16</th>
<th>32x32</th>
<th>64x64</th>
<th>128x128</th>
<th>256x256</th>
<th>512x512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill-in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16x16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32x32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64x64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128x128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256x256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512x512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Thies & F. W. Wubs
Parallel multilevel incomplete factorization of saddle point matrices
Stokes equations: number of iterations

2D Stokes-C: number of GMRES iterations on Schur-complement

- 8x8
- 16x16
2D lid-driven cavity

- Incompressible Navier-Stokes;
- Stretched structured grid (ratio \(\approx 5 \));
- Newton’s method;
- First Hopf-bifurcation at \(Re \approx 8375 \) (Tiesinga & Wubs 2002).
Navier-Stokes: convergence behavior

2D Driven Cavity, first Newton step: number of GMRES iterations

Convergence criterion: $\frac{||r||}{||r_0||} < 10^{-6}$
Navier-Stokes: achieving high accuracy

- Driven Cavity, 512×512 grid;
- Subdomain size: 8×8;
- Convergence tolerance 10^{-10};
- Preconditioned GMRES;

\Rightarrow Some modes not captured using this subdomain size.
Navier-Stokes: robust at high Reynolds numbers

- Can compute highly unstable steady states;
- Moderate increase in number of iterations;
- Conv. tol 10^{-8} here.
The HYbrid Multi-Level Solver HYMLS
Multi-Level ILU

- Reduced problem has same structure as original matrix;
- Recursive application leads to $N \log N$ comp. complexity;
- Cartesian partitioning can be used on coarser levels because nodes retain their GID
- Discretization looks less structured on coarser grids
- Orthogonal transforms act as transfer operators (cf. unsmoothed aggregation!)
- ‘Transfer operators’ (Householder) can be constructed as follows
 - Start with constant test vector on separators (for uniform grid)
 - Apply transform, pick V_{Σ} nodes to form next test vector
Multi-Level
Multi-Level
3D Navier-Stokes: weak scaling of direct method and HYMLS
3D Navier-Stokes: strong scaling of HYMLS
Objectives
Numerical methods
Robust ILU for Navier-Stokes on structured grids
The HYbrid Multi-Level Solver HYMLS
Augmented (‘bordered’) systems
Outlook and conclusions

3D Navier-Stokes: more levels

256³ runs on 1024 cores (2h setup, 100s solve) but is too memory intensive right now (2nd setup fails with bad_alloc, future work...)
Augmented (‘bordered’) systems
They are everywhere

\[
\begin{bmatrix}
A & V \\
W^T & C
\end{bmatrix}
\begin{bmatrix}
x \\
s
\end{bmatrix}
=
\begin{bmatrix}
f_x \\
f_c
\end{bmatrix}
\]

where A is a large sparse matrix and V and W contain a number of vectors. Occur in:

- Continuation (Jacobian A singular near turning point)
- Eigenvalue computation in Jacobi-Davidson method
- DO method for stochastic PDEs using implicit methods

In latter two methods one has to compute a correction on a space perpendicular to the current space.
Standard solution

Standard approach: Make block LU factorization

\[
\begin{bmatrix}
A & 0 \\
W^T & I
\end{bmatrix}
\begin{bmatrix}
I \\
0
\end{bmatrix}
\begin{bmatrix}
A^{-1}V \\
C - W^T A^{-1} V
\end{bmatrix}
\]

What if \(A \) becomes singular.

Arpack: targets 0 and 0.1
Incorporation in multilevel approach

Multilevel ILU comes in very handy. Example in two-level case:

\[
\begin{bmatrix}
A_{11} & A_{12} & V_1 \\
A_{21} & A_{22} & V_2 \\
W_1^T & W_2^T & C
\end{bmatrix}
= \begin{bmatrix}
I & A_{11}^{-1} A_{12} & A_{11}^{-1} V_1 \\
0 & A_{22} - A_{21} A_{11}^{-1} A_{12} & V_2 - A_{21} A_{11}^{-1} V_1 \\
0 & W_2^T - W_1^T A_{11}^{-1} A_{12} & C - W_1^T A_{11}^{-1} V_1
\end{bmatrix}
\]

- Coarsest level: direct method with pivoting to preclude instability.
- Indefiniteness likely to occur for low frequency modes. Problem pushed to coarsest grid.
- Coarsest system indef. \Rightarrow original problem indef., indicates bifurcation.
Outlook and conclusions
Generalizations

Different coordinate systems

- spherical coordinates common in geophysics

\[S_2 = r^2 \cdot c \cdot 2d\phi \]
\[S_0 = d\nu d\zeta \]
\[S = d\phi d\zeta \]

Flux-formulation \(\Rightarrow \mathcal{F}\)-matrix

Different discretizations:

- rotate \(\vec{v} \) by 45° \(\Rightarrow \mathcal{F}\)-matrix

Different physics:

- can solve Poisson, Convection-Diffusion, Stokes with the same technique
- can handle multiple variables, so adding heat transfer is easy
Possible improvements

Memory Usage too much temporary memory allocations right now

Scalability aggressive coarsening leads to decrease of cores used on coarser grids

Deflation to avoid ‘plateaus’ in GMRES (exploits bordered solver)

Adaptivity:
- Any domain decomposition can be used;
- Inhom. problems: short separators in regions of weak coupling.

Unstructured grids:
- Structure-preserving direct method?
Bifurcation analysis requires fast and robust linear algebra

We developed a solver that features
- Ease of use: only one parameter;
- Robustness: factorization doesn’t break down;
- Can be used as approximate Jacobian
- Parallelism: exposed on every level
- Grid-independent convergence for ILU
- Extendable to multi-physics problems
- Communication/computation like DD methods

Next steps
- Improvements on accuracy and performance.
- Do some nice (multiphysics) CFD problems.
- Look for generalizations.
References

