Parallel multilevel incomplete factorization of saddle point matrices

Jonas Thies* and Fred W. Wubs[†]

* Centre for Interdisciplinary Mathematics Uppsala University, Sweden jonas@math.uu.se

[†] Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl

UPPSALA UNIVERSITET Euro-TUG 2012 Lausanne June 4-6

《曰》 《圖》 《圖》 《圖》

Outline

- 2 Numerical methods
- 8 Robust ILU for Navier-Stokes on structured grids
- The HYbrid Multi-Level Solver HYMLS
- 5 Augmented ('bordered') systems
- Outlook and conclusions

医下口 医下

Objectives

Numerical methods Robust ILU for Navier-Stokes on structured grids The HYbrid Multi-Level Solver HYM LS Augmented (bordered) systems Outlook and conclusions

Objectives

J. Thies & F. W. Wubs 👘 Parallel multilevel incomplete factorization of saddle point matric

イロト イポト イヨト イヨト

э

Bifurcations and instabilities in fluid dynamics

- understand the physics of a flow
- time integration gives a glance at a point in parameter space
- we want to traverse parameter space and find interesting points
- our applications: transition to turbulence, climate change

Objectives

Numerical methods Robust ILU for Navier-Stokes on structured grids The HYbrid Multi-Level Solver HYM LS Augmented ('bordered') systems Outlook and conclusions

Benchmark problems

3D Lid Driven Cavity

Problem description and results in "Oscillatory instability of a three-dimensional lid-driven flow in a cube" by Yuri Feldman and Alexander Yu. Gelfgat, Phys. Fluids 22, 093602 (2010). They used FVM, $128^3 - 200^3$ grid. Aim is to study transition from steady state to periodic solution.

Boussinesq on the Globe. Domain from 60 degrees N Lat. to 60 degrees S Lat. Continent modelled by one line going from the north pole to 50 degrees S Lat. Depth 4000m.

Numerical ingredients: continuation of steady states and periodic solutions (LOCA), nonlinear equations (NOX), eigenvalue problems (Jacobi-Davidson).

Key challenge: efficient solution of large sparse linear systems.

イロト イポト イラト イラト

Numerical methods

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

э

Fully coupled fully implicit approach

Incompressible Navier-Stokes equations:

$$\begin{aligned} \frac{\partial \vec{\mathbf{u}}}{\partial t} + \mathcal{N}(\vec{\mathbf{u}},\vec{\mathbf{u}}) + \mathcal{L}\vec{\mathbf{u}} + \nabla \rho &= 0\\ \nabla \cdot \vec{\mathbf{u}} &= 0 \end{aligned}$$

- Discretize (here second order symmetry-preserving finite differences on C-grid)
- Linearize by Newton's method
- Structure of resulting linear systems (Saddle-point matrix):

$$\begin{pmatrix} \mathbf{L} + \mathbf{N} & \mathbf{Grad} \\ \mathbf{Div} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \vec{\mathrm{u}} \\ p \end{pmatrix} = \begin{pmatrix} f_{\vec{\mathrm{u}}} \\ f_{p} \end{pmatrix}$$
(1)

Numerical continuation methods

• Nonlinear system of equations
$$F(x, p) = 0$$

- $F: \mathbf{R}^{n+p} \to \mathbf{R}^n$: nonlinear function,
- $\mathbf{x} \in \mathbf{R}^n$ state vector,
- $\mathbf{p} \in \mathbf{R}^d$ parameter vector.
- Pseudo-arclength method:
 - Arc-length parameter s, choose parameter $\eta = \eta(s) \in \mathsf{p};$
 - \implies branch of solutions $\mathbf{x}_k, \eta(\mathbf{s}_k)$.
 - Need an additional equation: normalize tangent

$$\dot{\mathbf{x}}_k^T(\mathbf{x}-\mathbf{x}_k)+\dot{\eta}_k(\eta-\eta_k)-\Delta s_k^2=\mathbf{0}$$

- Predictor-Corrector scheme using Tangent and Newton's, resp.
- $ullet \Longrightarrow$ Linear systems with the Jacobian

an
$$\mathbf{J} = \begin{pmatrix} \mathbf{\Phi} & \mathbf{F}_{\eta} \\ \dot{\mathbf{x}}_{k}^{\mathsf{T}} & \dot{\eta}_{k} \end{pmatrix}$$
.

FVM: our new package for constructing Φ and F(x, p)

- read XML input file
- domain decomposition: create Epetra_Map
- one or two layers of overlap...
- \implies can build Φ and F on each subdomain
- Fortran API for doing this (application scientist has to fill a stencil array in Fortran, all MPI hidden
- NOX/LOCA interface defined once for all our test cases

Direct vs. iterative linear solvers

Sparse Direct	Preconditioned Iterative
robust and easy to use	usually not robust, depend on many
	parameters
comput. complexity $\mathcal{O}(N^2)$ in 3D	can have optimal complexity $\mathcal{O}(N)$
(N: number of unknowns)	
substantial fill-in $\mathcal{O}(N^{4/3})$	save memory + CPU time by avoid-
	ing fill-in

Can we combine the best of both? \rightarrow ILU close to LU and preserve properties

popular methods for Ax=b

- sparse direct (robust, only feasible in 2D)
- Krylov methods require robust preconditioning
- Plenty of methods for elliptic PDEs:
 - FFT (Poisson, structured grid)
 - Geometric Multigrid (structured grid)
 - Algebraic Multigrid
 - Fast Multipole for particle dynamics and Maxwell equations

There is no fast algorithm for (Navier-)Stokes in 3D!

NSE: state of the art

'Physics-based' Schur-complement preconditioners

- use simplified $\tilde{K} \approx K$ as preconditioner
- K

 typically involves Poisson- or convection-diffusion like systems

 that are solved using multigrid;
- for instance:

$$ilde{K} = \left[egin{array}{cc} A & O \ D & \hat{S} \end{array}
ight]$$

where $A = -\frac{1}{\text{Re}}L + N$. The Schur-complement S = -DAG is dense, so it has to be approximated somehow by \hat{S} in the preconditioner.

Drawbacks of block preconditioners

- System split into velocity and pressure globally
- Artificial pressure boundary conditions
- choice of \hat{C} very hard for high Reynolds Numbers
- Nested iterations
- How to choose 'inner' convergence criteria?
- No notion of a 'coarse grid' as in multigrid for elliptic PDEs
- adding e.g. heat transfer is typically not feasible (multi-block matrices)

 \implies Not a good option for transition to turbulence and multi-physics problems

A cartoon The matrix perspective

Robust ILU for Navier-Stokes on structured grids

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

化压力 化压力

A cartoon The matrix perspective

Ingredients for effective and robust incomplete factorization

- Eliminate velocity and pressure nodes together
- Fill reducing ordering
- Fourier-like transformation
 - improves diagonal dominance
 - to get rid of unwanted couplings
- Drop by retaining principal submatrices
 - these submatrices will be positive definite if the matrix is positive definite
- For incompressible Navier Stokes equation, do not drop in divergence and gradient part
 - There is no increase of fill in this part (not even in direct method) on C-grid

A cartoon The matrix perspective

Trilinos usage

- NOX/LOCA for nonlinearity
- implements lfpack_Preconditioner
- uses lfpack_Container class (sparse and dense)
- own interface to KLU for subdomains
- Amesos on coarsest level
- heavy use of Epetra, EpetraExt and Teuchos

34.16

A cartoon The matrix perspective

A cartoon of the new algorithm

Stokes on a structured C-grid

A cartoon The matrix perspective

A cartoon of the new algorithm, step 1

Domain decomposition

A cartoon The matrix perspective

A cartoon of the new algorithm, step 2

Identify separators

A cartoon The matrix perspective

A cartoon of the new algorithm, step 3

Elimination yields 'geometric' Schur-complement

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

A cartoon The matrix perspective

A cartoon of the new algorithm, step 4

Flux representation ('coarse grid')

A cartoon The matrix perspective

\mathcal{F} -matrices

A saddle point matrix has the following structure:

$$\mathcal{K} = \left[\begin{array}{cc} A & B \\ B^T & 0 \end{array} \right].$$
(2)

Definition 1

A gradient-type matrix has at most two nonzero entries per row and its row sum is zero.

Definition 2

A saddle point matrix (2) is called an \mathcal{F} -matrix if A is positive definite and B is a gradient-type matrix.

The Jacobian of the Stokes equations $({\rm Re} \to 0)$ on a C-grid is an ${\cal F}\text{-matrix}.$

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

A cartoon The matrix perspective

Computing an LU decomposition of an \mathcal{F} -matrix

$$\begin{bmatrix} A & B \\ B^{T} & 0 \end{bmatrix} \begin{bmatrix} x_{\nu} \\ x_{p} \end{bmatrix} = \begin{bmatrix} f_{\nu} \\ f_{p} \end{bmatrix}$$
V - nodes
P - nodes

Algorithm: LU decomposition of an \mathcal{F} -matrix.

- Compute a fill-reducing ordering for the graph $F(A) \cup F(BB^T)$,
- during Gaussian elimination, insert the P-nodes to form 2×2 pivots whenever a coupling between a V-node and a P-node is encountered.

Theorem 1

In every step of the above algorithm, the resulting Schur complement is an $\mathcal F$ -matrix.

A cartoon The matrix perspective

How is fill generated in the direct approach?

$$\begin{bmatrix} \alpha & \beta & a^T & b^T \\ \beta & 0 & \hat{b}^T & 0 \\ \hline a & \hat{b} & \hat{A} & \hat{B} \\ b & 0 & \hat{B}^T & O \end{bmatrix}$$

Elimination step:

- Multiple of $\hat{b}\hat{b}^{T}$ is added to \hat{A} ;
- \hat{b} becomes denser as P-nodes are eliminated;
- So dropping in \hat{A} doesn't make sense.

(3)

A cartoon The matrix perspective

Domain decomposition

- Subdomains and 'separator groups';
- Retain one pressure per subdomain.

• This ordering exposes parallelism in the matrix:

$$\mathcal{K} \Longrightarrow \left(egin{array}{cc} \mathcal{K}_{11} & \mathcal{K}_{12} \ \mathcal{K}_{21} & \mathcal{K}_{22} \end{array}
ight),$$

where K_{11} is block-diagonal.

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

A cartoon The matrix perspective

The Schur complement

- LU-decomposition of the matrices on the subdomains, $K_{11} = L_{11}U_{11}$;
- Schur-complement: $S = K_{22} K_{21}K_{11}^{-1}K_{12}$;
- S retains structural and numerical properties of K;
- S has only a few rather dense 'B' columns (with at most two entries per row);
- Solve the system with S by a preconditioned Krylov subspace method.

Schur-complement:

A cartoon The matrix perspective

How can we maintain sparsity?

- Still an *F*-matrix;
- All V-nodes on a separator are now connected to the same 2 P-nodes;
- Use orthogonal transformation to disconnect them.

A cartoon The matrix perspective

How can we maintain sparsity?

- Still an \mathcal{F} -matrix;
- All V-nodes on a separator are now connected to the same 2 P-nodes;
- Use orthogonal transformation to disconnect them.

 \implies Only one V-node per separator remains connected to P-nodes (V_{Σ} -nodes)

A cartoon The matrix perspective

Dropping

- Use simple drop-by-position:
 - Drop all couplings between separator groups
 - \bullet ... and all couplings between V_{Σ} and regular V-nodes.

A cartoon The matrix perspective

Dropping

- Use simple drop-by-position:
 - Drop all couplings between separator groups
 - \bullet ... and all couplings between V_{Σ} and regular V-nodes.

 \implies Block diagonal preconditioner with a 'reduced matrix' S_2 in the lower right.

A cartoon The matrix perspective

why it works

- Orthogonal transformations:
 - Eliminate most V-P couplings to avoid fill;
 - 'Transfer operators' defining coarse problem S_2 .
- Coarse problem S_2 : solve for flux V_{Σ} through each separator;
 - $\bullet\,$ Still an $\mathcal F\text{-matrix}$ in case of the Stokes equations;
- Constraint preconditioning:
 - no approximations in 'Grad' or 'Div' part;
 - mass is conserved exactly throughout.
- Drop-by-position
 - original properties preserved (symmetry, positiveness);
 - singular subsystems cannot occur.
- No segregation of variables:
 - velocity and pressure kept together;
 - no nested iterations.

A cartoon The matrix perspective

Stokes equations: relative fill

2D Stokes-C: fill-in

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

A cartoon The matrix perspective

Stokes equations: number of iterations

2D Stokes-C: number of GMRES iterations on Schur-complement

A cartoon The matrix perspective

2D lid-driven cavity

- Incompressible Navier-Stokes;
- Stretched structured grid (ratio \approx 5);
- Newton's method;
- First Hopf-bifurcation at *Re* ≈ 8375 (Tiesinga & Wubs 2002).

Driven Cavity, Re=8000: Streamfunction

A cartoon The matrix perspective

Navier-Stokes: convergence behavior

2D Driven Cavity, first Newton step: number of GMRES iterations

J. Thies & F. W. Wubs Parallel 1

Parallel multilevel incomplete factorization of saddle point matric

A cartoon The matrix perspective

Navier-Stokes: achieving high accuracy

- Driven Cavity, 512×512 grid;
- Subdomain size: 8 × 8;
- Convergence tolerance 10^{-10} ;
- Preconditioned GMRES;
- ⇒Some modes not captured using this subdomain size.

A cartoon The matrix perspective

Navier-Stokes: robust at high Reynolds numbers

- Can compute highly unstable steady states;
- Moderate increase in number of iterations;
- Conv. tol 10⁻⁸ here.

The HYbrid Multi-Level Solver HYMLS

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

4 声 5 4

3 N

Multi-Level ILU

- Reduced problem has same structure as original matrix;
- Recursive application leads to N log N comp. complexity;
- Cartesian partitioning can be used on coarser levels because nodes retain their GID
- discretization looks less structured on coarser grids
- orthogonal transforms act as transfer operators (cf. unsmoothed aggregation!)
- 'Transfer operators' (Householder) can be constructed as follows
 - start with constant test vector on separators (for uniform grid)
 - apply transform, pick V_{Σ} nodes to form next test vector

- 4 回 5 - 4 三 5 - 4 三 5

Multi-Level

*** *** *** *** *** ***		
*** *** *** *** *** ***		 *** *** *** *** *** *** *** ***
	사람은 눈 옷에 들어 있다. 옷 옷에 들어난 물다 옷이 들었다.	
***		****
*** *** *** *** *** ***	 	
*** *** *** *** *** ***		
*** *** *** *** *** ***		
***	 에너 프레이어 프레이너 프레이어 프레이너 프레이너 프레이너 프레이너 프레이너 프레이너 프레이너 프레이너	

Multi-Level

0 0 0	80 80 80	80 80 80	80 80 80	0 0	80 80 80	80 80 80	80 80 80		80 80 80	80 80 80	80 80 80	0	80 80 80	80 80 80	80 80 80	°.	80 80 90	80 80 80	80 80 80		80 80 80	80 80 80	80 80 80		80 80 80	80 80 80			80 80 80	80 80 80	80 80 80
•	80 80 80	80 80 80 80	80 80 80 80		80 80 80 80	90 90 90 90	8 0 80 80 80 80	000		80 80 80 80	80 80 80 80	000	90 90 90 90	80 80 80 80			80 80 80 80	80 80 80 80	80 80 80 80	0.00	80 80 80	80 80 80 80	ۥ 80 80 80		80 90 90	80 80 80 80	- 2 0 80 80 80		80 80 80 80	80 80 80 80	80 80 80
•	90 90 90	80 80 80	80 80 80 80		80 80 80	90 90 90 90	80 80 80 80	0	80 80 80 80	80 80 80	80	0.0	90 90 90 90	80 80 80 80	** 80 80 80		80 80 80	90 90 90 90	80 80 80 80	0.00	80 80 80 80	80 80 80	80 80 80		80 80 80 80	80 80 80	8 0 90		80 80 80	80 80 80 80	80 80 80
•	80 80 80	80 80 80	80 80 80	000	80 80 80	80 80 80	**************************************	000		80 80 80 80	-80		80 80 80	80 80 80	** **	000	80 80 80 80	80 80 80		0.00	80 80 80	80 80 80 80	-80		80 80 80 80	80 80 80 80			80 80 80	80 80 80	80 80
•	80 80 80	80 80 80 80	80 80 80	000	80 80 80	80 80 80	**************************************	000	- 80	80 80 80 80 80	- 80	0.0	80 80 80	80 80 80		0 0 0	80 80 80 80 80	80 80 80	80 80 80	0.00	80 80 80	80 80 80 80	80 80 80		80 80 80 80	80 80 80 80	80 80		80 80 80	80 80 80	80 80 80
•	80 80 80 80	80 80 80 80	80 90 90 90	0	80 80 80 80	80 80 80	**************************************		80 80 80 80	80 80 80 80	- 00	0.00	90 90 90 90	80 80 80 80		0 0 0		80 80 80 80	80 80 80	0.00		80 80 80 80	80 80 80 80		00 00 00 00	80 80 80 80			80 80 80	80 80 80	80 80 80
•	80 80 80	80 80 80	80 80 80		80 80 80	90 90 90	80 80 80		80 80 80	80 80 80	80 80 80	1	80 80 80	80 80 80	80 80 80		90 90 90	80 80 80	80 80 80	0	90 80 80	80 80 80	80 80 80		90 90 90	90 80 80	80 80 80		80 80 80	90 90 90	80 80 80
•	90 90 90 80	80 80 80	90 - 90 90 80		80 80 80 80	80 80 80	8 8 8 8 8 8	0 0 0	80 80	80 80 80 80	80 80 80		80 80	80 80 80	80 		80 80 80 80	90 90 90 80	80 80 80		80 80 80	80 80 80 80	80		80 80 80 80	80 80 80			80 80 80	80 80 80 80	80 80 80
0	80 0	80	80 0	°	*	80 0	80	°	80 0	80 0	80 0	ţ,	80 0	80 0	80	ţ°.	80	80 0	80 0	¢	80 0	80	80 0	°	80	80 0	80	°	80 0	80 0	80 0

Multi-Level

3D Navier-Stokes: weak scaling of direct method and HYMLS

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

3D Navier-Stokes: strong scaling of HYMLS

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

3D Navier-Stokes: more levels

256³ runs on 1024 cores (2h setup, 100s solve) but is too memory intensive right now (2nd setup fails with bad_alloc, future work...)

3 A .

They are everywhere Solution

Augmented ('bordered') systems

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

マロト イラト イラト

They are everywhere Solution

They are everywhere

$$\begin{bmatrix} A & V \\ W^T & C \end{bmatrix} \begin{bmatrix} x \\ s \end{bmatrix} = \begin{bmatrix} f_x \\ f_c \end{bmatrix}$$

where A is a large sparse matrix and V and W contain a number of vectors. Occur in:

- Continuation (Jacobian A singular near turning point)
- Eigenvalue computation in Jacobi-Davidson method
- DO method for stochastic PDEs using implicit methods

In latter two methods one has to compute a correction on a space perpendicular to the current space.

They are everywhere Solution

Standard solution

Standard approach: Make block LU factorization

$$\left[\begin{array}{cc} A & 0 \\ W^T & I \end{array}\right] \left[\begin{array}{cc} I & A^{-1}V \\ 0 & C - W^T A^{-1}V \end{array}\right]$$

What if A becomes singular.

Arpack: targets 0 and 0.1

They are everywhere Solution

Incorporation in multilevel approach

Multilevel ILU comes in very handy. Example in two-level case:

$$\begin{bmatrix} A_{11} & A_{12} & V_1 \\ A_{21} & A_{22} & V_2 \\ W_1^T & W_2^T & C \end{bmatrix} = \begin{bmatrix} A_{11} & 0 & 0 \\ A_{21} & l & 0 \\ W_1^T & 0 & l \end{bmatrix} \begin{bmatrix} I & A_{11}^{-1}A_{12} & A_{11}^{-1}V_1 \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} & V_2 - A_{21}A_{11}^{-1}V_1 \\ 0 & W_2^T - W_1^T A_{11}^{-1}A_{12} & C - W_1^T A_{11}^{-1}V_1 \end{bmatrix}$$

- Coarsest level: direct method with pivoting to preclude instability.
- Indefiniteness likely to occur for low frequency modes. Problem pushed to coarsest grid.
- Coarsest system indef. \Rightarrow original problem indef., indicates bifurcation.

4 3 5 4 3 5

Summary

Outlook and conclusions

J. Thies & F. W. Wubs Parallel multilevel incomplete factorization of saddle point matric

イロト イポト イヨト イヨト

Summary

Generalizations

Different coordinate systems

Different physics:

- can solve Poisson, Convection-Diffusion, Stokes with the same technique
- can handle multiple variables, so adding heat transfer is easy

Summary

Possible improvements

Memory Usage too much temporary memory allocations right now Scalability aggressive coarsening leads to decrease of cores used on coarser grids

Deflation to avoid 'plateaus' in GMRES (exploits bordered solver) **Adaptivity**:

- Any domain decomposition can be used;
- Inhom. problems: short separators in regions of weak coupling.

Unstructured grids:

• Structure-preserving direct method?

Summary

Summary

- Bifurcation analysis requires fast and robust linear algebra
- We developed a solver that features
 - Ease of use: only one parameter;
 - Robustness: factorization doesn't break down;
 - Can be used as approximate Jacobian
 - Parallelism: exposed on every level
 - Grid-independent convergence for ILU
 - Extendable to multi-physics problems
 - communication/computation like DD methods
- Next steps
 - Improvements on accuracy and performance.
 - Do some nice (multiphysics) CFD problems.
 - Look for generalizations.

Summary

References

- A.C. de Niet and F.W. Wubs. Numerically stable *LDL^T* factorization of F-type saddle point matrices. *IMA Journal of Numerical Analysis*, vol. 29, no 1, pp. 208-234.
- F.W.Wubs and J.Thies, "A robust two-level incomplete factorization for (Navier-) Stokes saddle point matrices, SIAM J. Matrix Anal. Appl., 32:1475 - 1499, 2011.
- Jonas Thies and Fred Wubs, Design of a Parallel Hybrid Direct/Iterative Solver for CFD Problems. *Proceedings 2011* Seventh IEEE International Conference on eScience, 5-8 December 2011, Stockholm, Sweden, pages 387 -394, 2011.
- G.L.G. Sleijpen and F.W. Wubs. Exploiting Multilevel Preconditioning Techniques in Eigenvalue Computations. SIAM Journal on Scientific Computing, 25(4):1249-1272, 2003.