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Outline 

• Embedded algorithms 

• Template-based generic programming 

• Incorporating approach into complex codes 

• Computational demonstrations 

• Ongoing and future work 



What does embedded mean? 

• We used to call this intrusive 

• Generally anything that requires more of a 
simulation code than just running it 
–  i.e., not black-box or non-intrusive 

• Why do this? 
– By asking for more, improvements can be made 

•  Increased efficiency, scalability, robustness 
• Greater understanding through deeper analysis 



•  Model problem 

•  Direct to steady-state, implicit time-stepping, linear stability 
analysis 

 
•  Steady-state parameter continuation 

•  Bifurcation analysis 

Examples of embedded algorithms 
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Examples of embedded algorithms 

•  Steady-state sensitivity analysis 

•  Transient sensitivity analysis 
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•  Steady-state stochastic problem (for simplicity): 

•  Stochastic Galerkin method (Ghanem and many, many others…): 

 
•  Method generates new coupled spatial-stochastic nonlinear problem (intrusive) 

 
•  Advantages: 

–  Many fewer stochastic degrees-of-freedom for comparable level of accuracy 
•  Challenges: 

–  Computing SG residual and Jacobian entries in large-scale, production simulation codes 
–  Solving resulting systems of equations efficiently 

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ
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Stochastic sparsity	
 Spatial sparsity	
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Challenges of embedded algorithms 

• Many kinds of quantities required 
–  State and parameter derivatives 
–  Various forms of second derivatives 
–  Polynomial chaos expansions 
– … 

•  Incorporating these directly requires significant effort 
–  Time consuming, error prone 
– Gets in the way of physics/model development 

• Requires code developers to understand 
requirements of algorithmic approaches 
–  Limits embedded algorithm R&D on complex problems 



A solution 

• Need a framework that  
–  Allows simulation code developers to focus on complex 

physics development 
–  Doesn’t make them worry about advanced analysis 
–  Allows derivatives and other quantities to be easily 

extracted 
–  Is extensible to future embedded algorithm requirements 

•  Template-based generic programming 
–  Code developers write physics code templated on scalar 

type 
–  Operator overloading libraries provide tools to propagate 

needed embedded quantities 
–  Libraries connect these quantities to embedded solver/

analysis tools 

•  Foundation for this approach lies with Automatic 
Differentiation (AD) 



What is Automatic Differentiation (AD)? 

•  Technique to compute analytic 
derivatives without hand-coding the 
derivative computation 

•  How does it work -- freshman calculus 
– Computations are composition 

of simple operations (+, *, sin(), 
etc…) with known derivatives 

– Derivatives computed line-by-
line, combined via chain rule 

•  Derivatives accurate as original 
computation  

– No finite-difference truncation 
errors 

•  Provides analytic derivatives without 
the time and effort of hand-coding 
them 
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Sacado:  AD Tools for C++ Codes 

• Several modes of Automatic Differentiation (AD) 
–  Forward (Jacobians, Jacobian-vector products, …) 
– Reverse (Gradients, Jacobian-transpose-vector products, …) 
–  Taylor (High-order univariate Taylor series) 
– Modes can be nested for various forms of higher derivatives 

• Sacado uses operator overloading-based approach for C++ 
codes 
–  Sacado provides C++ data type for each AD mode 
– Replace scalar type (e.g., double) with AD type in your code 
– Mathematical operations replaced by overloaded versions 

provided by Sacado 
–  Sacado uses expression templates to reduce overhead 



Templating for AD 

• Sacado AD types are designed for 
utmost efficiency of overloaded 
operators 
–  Small, simple, highly optimized AD 

classes for each AD mode 
–  Higher order modes are implemented 

by nesting lower order AD classes 
–  Many AD types to incorporate into 

your code 

•  Templating to automate  process of 
incorporating sacado AD 
–  Replace scalar type with template 

parameter 
–  Instantiate this template code on each 

AD data type 
–  Use metaprogramming techniques to 

manage templates 
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Simple Sacado Example 

#include "Sacado.hpp"	
	
// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
  ScalarT r = c*std::log(b+1.)/std::sin(a);	
	
  return r;	
}	
	
int main(int argc, char **argv) {	
  double a = std::atan(1.0);                        // pi/4 	
  double b = 2.0;	
  double c = 3.0;	
  int num_deriv = 2;                                // Number of independent variables	
	
  // Fad objects	
  Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
  Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
  Sacado::Fad::DFad<double> cfad(c);               // Passive variable	
  Sacado::Fad::DFad<double> rfad;                  // Result	
	
  // Compute function	
  double r = func(a, b, c);	
	
  // Compute function and derivative with AD	
  rfad = func(afad, bfad, cfad);	
	
  // Extract value and derivatives	
  double r_ad = rfad.val();     // r	
  double drda_ad = rfad.dx(0);  // dr/da	
  double drdb_ad = rfad.dx(1);  // dr/db	



AD to TBGP 

•  Benefits of templating 
–  Developers only develop, maintain, test one templated code base 
–  Developers don’t have to worry about what the scalar type really is 
–  Easy to incorporate new scalar types 

•  Templates provide a deep interface into code 
–  Can use this interface for more than derivatives 
–  Any calculation that can be implemented in an operation-by-operation 

fashion will work 
•  i.e., any calculation who’s data can be encoded in an object that looks like a 

scalar where operations on that scalar can be written in closed form 

•  We call this extension Template-Based Generic Programming (TBGP) 
–  Extended precision 
–  Floating point counts 
–  Logical sparsity 
–  Uncertainty propagation 

•  Intrusive stochastic Galerkin/polynomial chaos 
•  Simultaneous ensemble propagation 



•  By orthogonality of the basis polynomials 

•  The      are just the first            coefficients of the polynomial chaos 
expansion 

•  Basic idea is to compute such a truncated polynomial chaos 
expansion for each intermediate operation in the calculation of  
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f(û(y), y) =
∞�

i=0

Fiψi(y)

Fi P + 1

f(u, y)



•  Addition/subtraction 

•  Multiplication 

•  Division 

•  Several approaches for transcendental operations 
–  Taylor series and line integration (Fortran UQ Toolkit by Najm, Debusschere, 

Ghanem, Knio) 
–  Tensor product and sparse-grid quadrature (Pecos/Dakota) 
–  New work by Kevin Long on using the AGM method 

Projections of intermediate operations 



Intrusive PCE Data Types 

• By creating a new data type storing PC coefficients, and 
overloaded operators using these formulas, we can “automatically” 
propagate PC expansions (these live in Stokhos package) 

• Nesting with traditional AD types enables PC expansions of 
derivatives 
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Applying TBGP to PDEs 

• Sacado overloaded operators are designed for small, dense 
operations 
– Avoids performance issues of sparse arrays 
–  Eliminates need for row/column compression 
– Avoids issues with MPI 

• PDEs don’t generate small dense computations 
– But discretizations do generate sparse combinations of small, 

dense computations 

• Apply Sacado at PDE “element-fill” level 
–  Template element-fill routines 
– Manually gather/scatter data to/from global data structures 

•  Highly dependent on AD type used 
• Make it appear templated through template specialization 



Templated Element Fill 

Shape Opt 
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Template Specializations for 
Seed and Extract phases:	


Legend:	


Properties 

Global Data Structures	


Local Data Structures	




Trilinos Tools for PDEs Supporting TBGP 
•  Intrepid:  Tools for discretizations of PDEs 

–  Basis functions, quadrature rules, … 
–  All Intrepid classes/functions templated on scalar type 

•  Derivatives w.r.t. DOFs 
•  Derivatives w.r.t. coordinates 

 
•  Phalanx:  Local field evaluation kernels 

–  Organize consistent evaluation of “terms” in PDEs 
–  Explicitly manages fields/evaluators for different scalar types 

•  Shards 
–  Templated multi-dimensional array 

•  Stokhos 
–  PCE classes, overloaded operators 
–  Simultaneous ensemble propagation classes, overloaded operators 
–  Tools and data structures for forming, solving embedded SG systems 

•  Sacado 
–  Parameter library – tools to manage model parameters 
–  Template manager – tools to manage instantiations of a template class on multiple scalar 

types 
–  MPL – simple implementation of some metaprogramming constructs 



• These ideas provide tools to implement 
calculations needed for embedded analysis 
algorithms 
– Tools to implement ModelEvaluator OutArgs 
– Connect to high level nonlinear analysis algorithms 

• Examples of how to put these ideas together 
– Trilinos/packages/FEApp – simple 1D finite element 

code demonstrating TBGP 
– Albany – real PDE code 

• These ideas really do work for complex physics 



Rapid Physics Development 

Albany/LCM – Thermo-Elasto-Plasticity  
–  J. Ostein  et al 

Albany/QCAD – Quantum Device Modeling 
–  R. Muller et al 

Charon/MHD – Magnetic Island Coalescence  
–  Shadid, Pawlowski, Cyr 

Drekar/CASL – Thermal-Hydraulics  
–  Pawlowski, Shadid, Smith, Cyr 



Partially Embedded Optimization 

2-Param Optimum	
Initial Mesh	


•  Shape optimization of a sliding electromagnetic contact 
–  Salinger et al 
–  Coupled electrostatics, heat conduction 
–  Minimize increase in temperature 
–  Analytic derivatives w.r.t. mesh coordinates 
–  Finite differences of mesh coordinates w.r.t. shape parameters (FD around 

Cubit) 
–  Dakota gradient-based optimization 



Transient Sensitivities of Radiation Damage in 
Semiconductor Devices 

Scaled Sensitivities 
Comparison to FD: 
ü  Sensitivities at all 

time points 
ü  More accurate 
ü  More robust 
ü  14x faster! 



Embedded UQ R&D in Albany 

Linear Problem 

Linear Problem	


Nonlinear Problem	


Navier-Stokes 

Thermal-Electrostatics 

Enabling embedded UQ R&D on complex problems 



Steady-state mass transfer equations:	


Simultaneous propagation leads to greater 
performance 

Scalability of the element-level derivative computation	

Set of N hypothetical chemical species:	


DOF per element = 4*N	


•  Sacado AD C++ operator 
overloading library (Trilinos) 

•  Charon implicit finite element 
code 



Simultaneous propagation of UQ sample points 

•  “Non-intrusive” polynomial chaos 
•  Simultaneous calculation of residuals & Jacobians 

–  Sacado overloaded operators 
•  Simultaneous solution of block diagonal linear systems 

–  Reuse preconditioner 
–  Krylov basis recycling (Belos) 

•  Simple stochastic PDE 
–  Albany implicit PDE code (Salinger et al) 

Non-Intrusive Embedded Speed-Up 

# of uncertain 
parameters 

Solve 
Time 

Residual + 
Jacobian Time 

Solve 
Time 

Residual + 
Jacobian Time 

Solve Residual + 
Jacobian  

Total 

2 18 41 11 20 1.6 2 1.9 

4 100 200 54 44 1.9 4.5 3.1 

6 267 546 146 106 1.8 5.2 3.2 

8 495 1094 315 245 1.6 4.5 2.8 



Ongoing and Future Work 

• Incorporating Sacado types in Tpetra 
–  Indirect serialization appears to be a challenge 

• Incorporating Sacado types in Kokkos MDArray 
– Expression templates? 
– Dynamic memory allocation? 
– Threading within overloaded operators? 

• Rearranging embedded UQ algorithms for 
emerging multicore architectures 



• Rearrange for an outer-spatial, inner-stochastic, ordering 
–  Obtain very large, nearly dense blocks 
–  Use sparse outer layout for distributed memory parallelism 
–  Use dense inner blocks for on-node shared memory parallelism 

 
 

• Requires heterogeneous multicore parallelism in complete 
forward uncertainty propagation calculation 
–  Application fill 
–  Iterative solver matrix-vector productions 
–  Preconditioning 

•  FY12-14 SNL LDRD 

Exploit large stochastic blocks for multicore 
shared-memory parallelism 

Stochastic sparsity	
Spatial sparsity	




Concluding Remarks 

•  Enable embedded algorithms through 
–  Application code templating 
–  Operator overloading  

•  Numerous advantages 
–  Single templated code base to develop, test, maintain 
–  Developers for the most part don’t need to worry about embedded 

algorithms 
–  Provides hooks for current and future embedded algorithms 

• Main disadvantage is dealing with templates 
–  Templates are becoming ubiquitous in Trilinos 
–  Template metaprogramming ideas are becoming much more 

common 
–  C++ Template Metaprogramming by D. Abrahams and A. Gurtovoy 
–  Some recent work by Argonne OpenAD group to automatically 

transform code to use Sacado 
•  But doesn’t work with templates! 



Multicore and AD-based SG propagation 
through application code 

•  Quadrature approach for an arbitrary intermediate operation: 

 
•  2 dense mat-vecs, for-loop, and dense mat-vec: 

•  Each scalar operation is replaced by dense matrix-vector products 
and easily parallelized for loops 

–  Great opportunity for multicore parallelization 

•  Challenge:  Designing overloaded operators that function 
effectively on GPUs 
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