
Embedded Algorithms through Template-
based Generic Programming

Eric Phipps (etphipp@sandia.gov),
Roger Pawlowski, Andy Salinger,

Sandia National Laboratories

2011 Trilinos User Group Meeting
Nov. 1-3, 2011

SAND 2011-8396C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Outline

• Embedded algorithms

• Template-based generic programming

• Incorporating approach into complex codes

• Computational demonstrations

• Ongoing and future work

What does embedded mean?

• We used to call this intrusive

• Generally anything that requires more of a
simulation code than just running it
–  i.e., not black-box or non-intrusive

• Why do this?
– By asking for more, improvements can be made

•  Increased efficiency, scalability, robustness
• Greater understanding through deeper analysis

•  Model problem

•  Direct to steady-state, implicit time-stepping, linear stability
analysis

•  Steady-state parameter continuation

•  Bifurcation analysis

Examples of embedded algorithms

f(ẋ, x, p) = 0, ẋ, x ∈ Rn, p ∈ Rm, f : R2n+m → Rn

�
α
∂f

∂ẋ
+ β

∂f

∂x

�
∆x = −f

f(x, p) = 0,

σ(x, p) = 0,
σ = −uTJv,

∂σ

∂x
= −uT ∂

∂x
(Jv),

∂σ

∂p
= −uT ∂

∂p
(Jv),

�
J a
bT 0

� �
v
s1

�
=

�
0
1

�
,

�
JT b
aT 0

� �
u
s1

�
=

�
0
1

�

f(x(n), p(n)) = 0

g(x(n), p(n)) = vT
x (x(n) − x(n−1)) + vT

p (p(n) − p(n−1)) − ∆sn = 0

−→
�

∂f
∂x

∂f
∂p

vT
x vT

p

� �
∆x(n)

∆p(n)

�
= −

�
f
g

�

Examples of embedded algorithms

•  Steady-state sensitivity analysis

•  Transient sensitivity analysis

f(x∗, p) = 0, s∗ = g(x∗, p) =⇒
ds∗

dp
= −

∂g

∂x
(x∗, p)

�
∂f

∂x
(x∗, p)

�−1 ∂f

∂p
(x∗, p)) +

∂g

∂p
(x∗, p)

f(ẋ, x, p) = 0,

∂f

∂ẋ

∂ẋ

∂p
+

∂f

∂x

∂x

∂p
+

∂f

∂p
= 0

•  Steady-state stochastic problem (for simplicity):

•  Stochastic Galerkin method (Ghanem and many, many others…):

•  Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

•  Advantages:

–  Many fewer stochastic degrees-of-freedom for comparable level of accuracy
•  Challenges:

–  Computing SG residual and Jacobian entries in large-scale, production simulation codes
–  Solving resulting systems of equations efficiently

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

0 = F (U) =





F0

F1
...

FP




, U =





u0

u1
...

uP





Stochastic sparsity	

 Spatial sparsity	

∂F

∂U
:

Stochastic Galerkin UQ Methods

û(ξ) =
P�

i=0

uiψi(ξ) → Fi(u0, . . . , uP) =
1

�ψ2
i �

�

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , P

Challenges of embedded algorithms

• Many kinds of quantities required
–  State and parameter derivatives
–  Various forms of second derivatives
–  Polynomial chaos expansions
– …

•  Incorporating these directly requires significant effort
–  Time consuming, error prone
– Gets in the way of physics/model development

• Requires code developers to understand
requirements of algorithmic approaches
–  Limits embedded algorithm R&D on complex problems

A solution

• Need a framework that
–  Allows simulation code developers to focus on complex

physics development
–  Doesn’t make them worry about advanced analysis
–  Allows derivatives and other quantities to be easily

extracted
–  Is extensible to future embedded algorithm requirements

•  Template-based generic programming
–  Code developers write physics code templated on scalar

type
–  Operator overloading libraries provide tools to propagate

needed embedded quantities
–  Libraries connect these quantities to embedded solver/

analysis tools

•  Foundation for this approach lies with Automatic
Differentiation (AD)

What is Automatic Differentiation (AD)?

•  Technique to compute analytic
derivatives without hand-coding the
derivative computation

•  How does it work -- freshman calculus
– Computations are composition

of simple operations (+, *, sin(),
etc…) with known derivatives

– Derivatives computed line-by-
line, combined via chain rule

•  Derivatives accurate as original
computation

– No finite-difference truncation
errors

•  Provides analytic derivatives without
the time and effort of hand-coding
them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

2.000

7.389

0.301

0.602

7.991

0.991

Sacado: AD Tools for C++ Codes

• Several modes of Automatic Differentiation (AD)
–  Forward (Jacobians, Jacobian-vector products, …)
– Reverse (Gradients, Jacobian-transpose-vector products, …)
–  Taylor (High-order univariate Taylor series)
– Modes can be nested for various forms of higher derivatives

• Sacado uses operator overloading-based approach for C++
codes
–  Sacado provides C++ data type for each AD mode
– Replace scalar type (e.g., double) with AD type in your code
– Mathematical operations replaced by overloaded versions

provided by Sacado
–  Sacado uses expression templates to reduce overhead

Templating for AD

• Sacado AD types are designed for
utmost efficiency of overloaded
operators
–  Small, simple, highly optimized AD

classes for each AD mode
–  Higher order modes are implemented

by nesting lower order AD classes
–  Many AD types to incorporate into

your code

•  Templating to automate process of
incorporating sacado AD
–  Replace scalar type with template

parameter
–  Instantiate this template code on each

AD data type
–  Use metaprogramming techniques to

manage templates

Data type Calculation
double!

DFad<double>!

Rad<double>!

DFad< DFad< double> >!

Rad< DFad<double> >!

f(x)

fxV

fT
x W

(fxV1)xV2

(fT
x W)xV

Simple Sacado Example

#include "Sacado.hpp"	
	
// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
 ScalarT r = c*std::log(b+1.)/std::sin(a);	
	
 return r;	
}	
	
int main(int argc, char **argv) {	
 double a = std::atan(1.0); // pi/4 	
 double b = 2.0;	
 double c = 3.0;	
 int num_deriv = 2; // Number of independent variables	
	
 // Fad objects	
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
 Sacado::Fad::DFad<double> cfad(c); // Passive variable	
 Sacado::Fad::DFad<double> rfad; // Result	
	
 // Compute function	
 double r = func(a, b, c);	
	
 // Compute function and derivative with AD	
 rfad = func(afad, bfad, cfad);	
	
 // Extract value and derivatives	
 double r_ad = rfad.val(); // r	
 double drda_ad = rfad.dx(0); // dr/da	
 double drdb_ad = rfad.dx(1); // dr/db	

AD to TBGP

•  Benefits of templating
–  Developers only develop, maintain, test one templated code base
–  Developers don’t have to worry about what the scalar type really is
–  Easy to incorporate new scalar types

•  Templates provide a deep interface into code
–  Can use this interface for more than derivatives
–  Any calculation that can be implemented in an operation-by-operation

fashion will work
•  i.e., any calculation who’s data can be encoded in an object that looks like a

scalar where operations on that scalar can be written in closed form

•  We call this extension Template-Based Generic Programming (TBGP)
–  Extended precision
–  Floating point counts
–  Logical sparsity
–  Uncertainty propagation

•  Intrusive stochastic Galerkin/polynomial chaos
•  Simultaneous ensemble propagation

•  By orthogonality of the basis polynomials

•  The are just the first coefficients of the polynomial chaos
expansion

•  Basic idea is to compute such a truncated polynomial chaos
expansion for each intermediate operation in the calculation of

Given a(y) =
P�

i=0

aiψi(y), b =
P�

i=0

biψi(y), find c(y) =
P�

i=0

ciψi(y)

such that
�

Γ

�
c(y) − φ(a(y), b(y))

�
ψi(y)ρ(y)dy = 0, i = 0, . . . , P

Intrusive polynomial chaos through TBGP
f(u, ξ) = 0, û(ξ) =

P�

i=0

uiψi(ξ)

→ Fi(u0, . . . , uP) =
1

�ψ2
i �

�

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , P

(ψi,ψj) = �ψiψj� =

�

Γ
ψi(y)ψj(y)ρ(y)dy = �ψ2

i �δij

f(û(y), y) =
∞�

i=0

Fiψi(y)

Fi P + 1

f(u, y)

•  Addition/subtraction

•  Multiplication

•  Division

•  Several approaches for transcendental operations
–  Taylor series and line integration (Fortran UQ Toolkit by Najm, Debusschere,

Ghanem, Knio)
–  Tensor product and sparse-grid quadrature (Pecos/Dakota)
–  New work by Kevin Long on using the AGM method

Projections of intermediate operations

Intrusive PCE Data Types

• By creating a new data type storing PC coefficients, and
overloaded operators using these formulas, we can “automatically”
propagate PC expansions (these live in Stokhos package)

• Nesting with traditional AD types enables PC expansions of
derivatives

x(ξ) =

P�

i=0

xiψi(ξ) −→
∂f

∂x
(x(ξ)) ≈

P�

i=0

Jiψi(ξ)

x(ξ) =
P�

i=0

xiψi(ξ) −→ f(x(ξ)) ≈
P�

i=0

fiψi(ξ)OrthogPoly<double>:!

DFad< OrthogPoly<double> >:!

Applying TBGP to PDEs

• Sacado overloaded operators are designed for small, dense
operations
– Avoids performance issues of sparse arrays
–  Eliminates need for row/column compression
– Avoids issues with MPI

• PDEs don’t generate small dense computations
– But discretizations do generate sparse combinations of small,

dense computations

• Apply Sacado at PDE “element-fill” level
–  Template element-fill routines
– Manually gather/scatter data to/from global data structures

•  Highly dependent on AD type used
• Make it appear templated through template specialization

Templated Element Fill

Shape Opt
PCE

Adjoint
Hessian

Field Manager	

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic Template Type
used for Compute Phase	

<EvalT>

PDE Terms

Template Specializations for
Seed and Extract phases:	

Legend:	

Properties

Global Data Structures	

Local Data Structures	

Trilinos Tools for PDEs Supporting TBGP
•  Intrepid: Tools for discretizations of PDEs

–  Basis functions, quadrature rules, …
–  All Intrepid classes/functions templated on scalar type

•  Derivatives w.r.t. DOFs
•  Derivatives w.r.t. coordinates

•  Phalanx: Local field evaluation kernels

–  Organize consistent evaluation of “terms” in PDEs
–  Explicitly manages fields/evaluators for different scalar types

•  Shards
–  Templated multi-dimensional array

•  Stokhos
–  PCE classes, overloaded operators
–  Simultaneous ensemble propagation classes, overloaded operators
–  Tools and data structures for forming, solving embedded SG systems

•  Sacado
–  Parameter library – tools to manage model parameters
–  Template manager – tools to manage instantiations of a template class on multiple scalar

types
–  MPL – simple implementation of some metaprogramming constructs

• These ideas provide tools to implement
calculations needed for embedded analysis
algorithms
– Tools to implement ModelEvaluator OutArgs
– Connect to high level nonlinear analysis algorithms

• Examples of how to put these ideas together
– Trilinos/packages/FEApp – simple 1D finite element

code demonstrating TBGP
– Albany – real PDE code

• These ideas really do work for complex physics

Rapid Physics Development

Albany/LCM – Thermo-Elasto-Plasticity
–  J. Ostein et al

Albany/QCAD – Quantum Device Modeling
–  R. Muller et al

Charon/MHD – Magnetic Island Coalescence
–  Shadid, Pawlowski, Cyr

Drekar/CASL – Thermal-Hydraulics
–  Pawlowski, Shadid, Smith, Cyr

Partially Embedded Optimization

2-Param Optimum	

Initial Mesh	

•  Shape optimization of a sliding electromagnetic contact
–  Salinger et al
–  Coupled electrostatics, heat conduction
–  Minimize increase in temperature
–  Analytic derivatives w.r.t. mesh coordinates
–  Finite differences of mesh coordinates w.r.t. shape parameters (FD around

Cubit)
–  Dakota gradient-based optimization

Transient Sensitivities of Radiation Damage in
Semiconductor Devices

Scaled Sensitivities
Comparison to FD:
ü  Sensitivities at all

time points
ü  More accurate
ü  More robust
ü  14x faster!

Embedded UQ R&D in Albany

Linear Problem

Linear Problem	

Nonlinear Problem	

Navier-Stokes

Thermal-Electrostatics

Enabling embedded UQ R&D on complex problems

Steady-state mass transfer equations:	

Simultaneous propagation leads to greater
performance

Scalability of the element-level derivative computation	

Set of N hypothetical chemical species:	

DOF per element = 4*N	

•  Sacado AD C++ operator
overloading library (Trilinos)

•  Charon implicit finite element
code

Simultaneous propagation of UQ sample points

•  “Non-intrusive” polynomial chaos
•  Simultaneous calculation of residuals & Jacobians

–  Sacado overloaded operators
•  Simultaneous solution of block diagonal linear systems

–  Reuse preconditioner
–  Krylov basis recycling (Belos)

•  Simple stochastic PDE
–  Albany implicit PDE code (Salinger et al)

Non-Intrusive Embedded Speed-Up

of uncertain
parameters

Solve
Time

Residual +
Jacobian Time

Solve
Time

Residual +
Jacobian Time

Solve Residual +
Jacobian

Total

2 18 41 11 20 1.6 2 1.9

4 100 200 54 44 1.9 4.5 3.1

6 267 546 146 106 1.8 5.2 3.2

8 495 1094 315 245 1.6 4.5 2.8

Ongoing and Future Work

• Incorporating Sacado types in Tpetra
–  Indirect serialization appears to be a challenge

• Incorporating Sacado types in Kokkos MDArray
– Expression templates?
– Dynamic memory allocation?
– Threading within overloaded operators?

• Rearranging embedded UQ algorithms for
emerging multicore architectures

• Rearrange for an outer-spatial, inner-stochastic, ordering
–  Obtain very large, nearly dense blocks
–  Use sparse outer layout for distributed memory parallelism
–  Use dense inner blocks for on-node shared memory parallelism

• Requires heterogeneous multicore parallelism in complete
forward uncertainty propagation calculation
–  Application fill
–  Iterative solver matrix-vector productions
–  Preconditioning

•  FY12-14 SNL LDRD

Exploit large stochastic blocks for multicore
shared-memory parallelism

Stochastic sparsity	

Spatial sparsity	

Concluding Remarks

•  Enable embedded algorithms through
–  Application code templating
–  Operator overloading

•  Numerous advantages
–  Single templated code base to develop, test, maintain
–  Developers for the most part don’t need to worry about embedded

algorithms
–  Provides hooks for current and future embedded algorithms

• Main disadvantage is dealing with templates
–  Templates are becoming ubiquitous in Trilinos
–  Template metaprogramming ideas are becoming much more

common
–  C++ Template Metaprogramming by D. Abrahams and A. Gurtovoy
–  Some recent work by Argonne OpenAD group to automatically

transform code to use Sacado
•  But doesn’t work with templates!

Multicore and AD-based SG propagation
through application code

•  Quadrature approach for an arbitrary intermediate operation:

•  2 dense mat-vecs, for-loop, and dense mat-vec:

•  Each scalar operation is replaced by dense matrix-vector products
and easily parallelized for loops

–  Great opportunity for multicore parallelization

•  Challenge: Designing overloaded operators that function
effectively on GPUs

a(y) =
P�

i=0

aiψi(y), b(y) =
P�

i=0

biψi(y), c(y) =
P�

i=0

ciψi(y),

c = φ(a, b) =⇒ ci =
1

�ψ2
i �

�

Γ
φ(a(y), b(y))ψi(y)ρ(y)dy ≈

Q�

j=0

wjφ(a(yj), b(yj))ψi(yj)

Ψ = [ψi(yj)] ∈ R(P+1)×(Q+1), ā = [ai] ∈ RP+1, b̄ = [bi] ∈ RP+1, c̄ = [ci] ∈ RP+1,

A = [a(yj)] ∈ RQ+1, B = [b(yj)] ∈ RQ+1,

=⇒ A = ΨT ā, B = ΨT b̄, Φ = [wjφ(Aj, Bj)] ∈ RQ+1, c̄ = ΨΦ

