Embedded Algorithms through Template-
based Generic Programming

Eric Phipps (etphipp@sandia.gov),
Roger Pawlowski, Andy Salinger,
Sandia National Laboratories

2011 Trilinos User Group Meeting
Nov. 1-3, 2011

SAND 2011-8396C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia =
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of :,.k - . .
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. E‘Exﬁ Sandia National Laboratories

Outline

- Embedded algorithms

* Template-based generic programming

* Incorporating approach into complex codes

 Computational demonstrations

* Ongoing and future work

Sandia National Laboratories

What does embedded mean?

* We used to call this intrusive

* Generally anything that requires more of a
simulation code than just running it

—1.e., not black-box or non-intrusive

 Why do this?
— By asking for more, improvements can be made

* Increased efficiency, scalability, robustness
» Greater understanding through deeper analysis

111} Sandia National Laboratories

Examples of embedded algorithms

* Model problem
.f(mv CU,p) =0,

&,z € R®, peR™, f:R*T™ L R"

 Direct to steady-state, implicit time-stepping, linear stability

analysis

of

(a_

oz

of

+,5£> Az = —f

» Steady-state parameter continuation
F(@™,p™) =0
g(z™,p™) = oI (@™ — ") 4 T (p™ — p(" V) — As, =0

af
y ox
%
 Bifurcation analysis
x =0
f(z, p) 3 _ —uTJ’U,

o(x,p) =0,

v

[Zoely

|=i) [er o] 2]

9 | TAaz(™ . f

| lap] = =13

0 o0 0 3]
) e =i (i)
ox ox 15) op

x

Sandia National Laboratories

Examples of embedded algorithms

« Steady-state sensitivity analysis

.f(w*ap) =0, s"= g(w*vp) -

ds* 98g, , of . —taf, . dg , .
dp —%(«’B » D) (%(QE aP)) a—p(w ’p))+8_p(w D)

* Transient sensitivity analysis

f(ivw7p):()9
ofox OfO0x O
roi osos o _
OrtOp Ox0Op Op

0

Sandia National Laboratories

» Stochastic Galerkin method (Ghanem and many, many others...):

ﬁ’(&) — Z uz¢z(€) — F,,',('U,(), cen ,’u,p) =

1=0

Stochastic Galerkin UQ Methods

» Steady-state stochastic problem (for simplicity):
Find u (&) such that f(u,£) =0, £: Q — I C RM, density p

1
(¥7)

/F F(a(y), v)e:(y)p(y)dy =0, i=0,...,P

» Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

0=F(U) =

« Advantages:

Ug
Uq

up

OF
oU

o0 50 100 150 200 250 300

o0

5001

1000~

500 1000
T

1500 2000
T T

1500

2000

Stochastic sparsity

Spatial sparsity

— Many fewer stochastic degrees-of-freedom for comparable level of accuracy

* Challenges:

— Computing SG residual and Jacobian entries in large-scale, production simulation codes
— Solving resulting systems of equations efficiently

QL

Sandia National Laboratories

Challenges of embedded algorithms

« Many kinds of quantities required
— State and parameter derivatives
— Various forms of second derivatives
— Polynomial chaos expansions

* Incorporating these directly requires significant effort

— Time consuming, error prone
— Gets in the way of physics/model development

* Requires code developers to understand
requirements of algorithmic approaches

— Limits embedded algorithm R&D on complex problems

QL

Sandia National Laboratories

A solution

* Need a framework that

— Allows simulation code developers to focus on complex
physics development

— Doesn’t make them worry about advanced analysis

— Allows derivatives and other quantities to be easily
extracted

— Is extensible to future embedded algorithm requirements

 Template-based generic programming
— Code developers write physics code templated on scalar
type
— Operator overloading libraries provide tools to propagate
needed embedded quantities

— Libraries connect these quantities to embedded solver/
analysis tools

* Foundation for this approach lies with Automatic
Differentiation (AD)

ﬂ'l Sandia National Laboratories

What is Automatic Differentiation (AD)?

Technique to compute analytic
derivatives without hand-coding the
derivative computation

How does it work -- freshman calculus
— Computations are composition
of simple operations (+, *, sin(),
etc...) with known derivatives

— Derivatives computed line-by-
line, combined via chain rule

Derivatives accurate as original
computation

— No finite-difference truncation
errors

Provides analytic derivatives without
tne time and effort of hand-coding
them

y = sin(e” + xlogx), « = 2

u <+ logx
vV — U
w—t+ov

Yy < sinw

d

xT -

dx
2.000| 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188

Sandia National Laboratories

Sacado: AD Tools for C++ Codes

« Several modes of Automatic Differentiation (AD)
— Forward (Jacobians, Jacobian-vector products, ...)
— Reverse (Gradients, Jacobian-transpose-vector products, ...)
— Taylor (High-order univariate Taylor series)
— Modes can be nested for various forms of higher derivatives

« Sacado uses operator overloading-based approach for C++
codes

— Sacado provides C++ data type for each AD mode
— Replace scalar type (e.g., double) with AD type in your code

— Mathematical operations replaced by overloaded versions
provided by Sacado

— Sacado uses expression templates to reduce overhead

111! Sandia National Laboratories

Templating for AD

« Sacado AD types are designed for
utmost efficiency of overloaded

operators

— Small, simple, highly optimized AD .
classes f0||? each G,jO‘Dymopde doubleData type Calffll(gtlon

— Higher order modes are implemented
by nesting lower order AD classes i SHSEE 2V

— Many AD types to incorporate into Rad<double> f;FW
your code DFad< DFad< double> > (foV1)aVa

Rad< DFad<double> > (f,,’fW)mV

* Templating to automate process of
incorporating sacado AD

— Replace scalar type with template
parameter

— Instantiate this template code on each
AD data type

— Use metaprogramming techniques to
manage templates

111} Sandia National Laboratories

‘!:!Z"::;'.Esn» A1l.rf -
Simple Sacado Example

#include "Sacado.hpp" ‘\\\

// The function to differentiate

template <typename ScalarT>

ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;
}
int mainCint argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double ¢ = 3.0;
int num_deriv = 2; // Number of independent variables

// Fad objects

Sacado: :Fad: :DFad<double> afad(num_deriv, @, a); // First (@) indep. var
Sacado: :Fad: :DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado: :Fad: :DFad<double> cfad(c); // Passive variable
Sacado: :Fad: :DFad<double> rfad; // Result

// Compute function
double r = func(a, b, ©);

// Compute function and derivative with AD
rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.valQ); // r
rfad.dx(@); // dr/da
rfad.dx(1); // dr/db

double drda_ad
double drdb_ad

AD to TBGP

* Benefits of templating
— Developers only develop, maintain, test one templated code base
— Developers don’t have to worry about what the scalar type really is
— Easy to incorporate new scalar types

 Templates provide a deep interface into code
— Can use this interface for more than derivatives

— Any calculation that can be implemented in an operation-by-operation
fashion will work

* i.e., any calculation who’s data can be encoded in an object that looks like a
scalar where operations on that scalar can be written in closed form

* We call this extension Template-Based Generic Programming (TBGP)
— Extended precision
— Floating point counts
— Logical sparsity
— Uncertainty propagation
* Intrusive stochastic Galerkin/polynomial chaos
» Simultaneous ensemble propagation

!11 Sandia National Laboratories

Intrusive polynomial chaos through TBGP

1
(¥3)
» By orthogonality of the basis polynomials

(ir ;) = (hipy) = / D (W) (¥)p()dy = (H2)6s;

— Fi;(ugy...,up) =

/F F(a(y) v)ei(y)p(y)dy =0, i=0,...,P

* The F; are just the first P 4 1 coefficients of the polynomial chaos
expansion

fa(y),y) = Z Fivi(y)

- Basic idea is to compute such a truncated polynomial chaos

expansion for each intermediate operation in the calculation of f(u,y)
P

Given a(y) = Z a;v;(y), b= Z bii(y), find c(y) =) ciths(y)

1=0

such that [(c(y) = $(a(@);b®) ¥ ()p®)dy =0, i=0,....P

Sandia National Laboratories

Projections of intermediate operations

« Addition/subtraction

c=axtb= c; =a; b

* Multiplication

== Ve = XS atyiy o= 3 Yo B
’ k
e Division

c=a/b= > > cbiihi = anp; — Y > (i) = ar(yp)
7 7 z 7 7
» Several approaches for transcendental operations

— Taylor series and line integration (Fortran UQ Toolkit by Najm, Debusschere,
Ghanem, Knio)

— Tensor product and sparse-grid quadrature (Pecos/Dakota)
— New work by Kevin Long on using the AGM method

111} Sandia National Laboratories

Intrusive PCE Data Types

* By creating a new data type storing PC coefficients, and
overloaded operators using these formulas, we can “automatically”

propagate PC expansions (these live in Stokhos package)
P

P
OrthogPoly<double>: «(£) =Y zi;(&) — f(z(&)) =) fihi()

1=0 1=0
* Nesting with traditional AD types enables PC expansions of
derivatives

P P
DFad< OrthogPoly<double> >: xz(§) = Z xip; (§) — %(w(f)) == Z Jihi(€)

Sandia National Laboratories

Applying TBGP to PDEs

« Sacado overloaded operators are designed for small, dense

operations
— Avoids performance issues of sparse arrays
— Eliminates need for row/column compression
— Avoids issues with MPI

* PDEs don’t generate small dense computations

— But discretizations do generate sparse combinations of small,

dense computations

* Apply Sacado at PDE “element-fill” level
— Template element-fill routines

— Manually gather/scatter data to/from global data structures

* Highly dependent on AD type used

 Make it appear templated through template specialization

QL

Sandia National Laboratories

Templated Element Fill

Field Manager

Scatter (Extract) Legend:
k\k i = Global Data Structures i
< i — Local Data Structures i
PDE Terms [oommmommoomosmoooeoooooooo ;
- 7y ’ :Generic Template Type !
. iused for Compute Phase
Properties | [<EvalT>] ;
A ! ,
| Source Terms |
- yy ¢ ‘Template Specializations for |
:Seed and Extract phases:

FE Interpolation) | |
Compute Derivs |

\Get Coordinates}
C

*: Gather (Seed)
C

C
C
C
C

Sandia National Laboratories

Trilinos Tools for PDEs Supporting TBGP

Intrepid: Tools for discretizations of PDEs
— Basis functions, quadrature rules, ...
— All Intrepid classes/functions templated on scalar type

* Derivatives w.r.t. DOFs
* Derivatives w.r.t. coordinates

Phalanx: Local field evaluation kernels
— Organize consistent evaluation of “terms” in PDEs
— Explicitly manages fields/evaluators for different scalar types

Shards
— Templated multi-dimensional array

Stokhos
— PCE classes, overloaded operators
— Simultaneous ensemble propagation classes, overloaded operators

— Tools and data structures for forming, solving embedded SG systems

Sacado
— Parameter library — tools to manage model parameters

— Template manager — tools to manage instantiations of a template class on multiple scalar

types
— MPL - simple implementation of some metaprogramming constructs

h

Sandia National Laboratories

* These ideas provide tools to implement
calculations needed for embedded analysis
algorithms

— Tools to implement ModelEvaluator OutArgs
— Connect to high level nonlinear analysis algorithms

« Examples of how to put these ideas together

— Trilinos/packages/FEApp — simple 1D finite element
code demonstrating TBGP

— Albany - real PDE code

* These ideas really do work for complex physics

111} Sandia National Laboratories

Rapid Physics Development

Albany/LCM - Thermo-Elasto-Plasticity
— J. Ostein et al

Charon/MHD - Magnetic Island Coalescence
— Shadid, Pawlowski, Cyr

ime = 6.866

c&o(—ﬁi.o-v:m L 0

8-
v

DADT

00e-

A
f{)
O
&
®
@

Albany/QCAD - Quantum Device Modeling

— R. Muller et al

solutior
28340567
~ 28000

Drekar/CASL — Thermal-Hydraulics
— Pawlowski, Shadid, Smith, Cyr

_VORT_MAG

1.844e+04
1.383e+04
9.218e+03

4.609e+03
1.431e-02

111! Sandia National Laboratories

Partially Embedded Optimization

« Shape optimization of a sliding electromagnetic contact
— Salinger et al

— Coupled electrostatics, heat conduction
— Minimize increase in temperature

— Analytic derivatives w.r.t. mesh coordinates
— Finite differences of mesh coordinates w.r.t. shape parameters (FD around
Cubit)

— Dakota gradient-based optimization

Initial Mesh

2-Param Optimum

Temperature

Temperature
26

nn
E’%
ne
-
R
I
N
e
| T

24

22

ﬂ'l Sandia National Laboratories

Transient Sensitivities of Radiation Damage in

Semiconductor Devices

Electric Potential

4.724e-01 -2.131e-01 4.6]e-(Y2 3.05»01 5.646e-01

Comparison to FD:

v' Sensitivities at all
time points

v" More accurate

More robust

14x faster!

SN

Scaled Sensitivity

Scaled Sensitivity
1

Scaled Sensitivities

time = 1.0e-03

Base current (pA)

0
- No irradiation: Ig=-0.05 yA 1
2 4
Experiment
4
Defect annealing
6 4
1 1 L 1
105 10% 10° 102 107 10°
Time (s)

R R

10 20 30 40 50 60 70 80 90 100 110 120

time=1.0

10 20 30 40 50 60 70 80 90 100 110 120
Parameter

QUALIFICATION ALTERNATIVES TO SPR

m

Sandia National Laboratories

Embedded UQ R&D in Albany

— Navier-Stokes o e 250122?‘331. }o’aroblem
- o :
250 a
Thermal-Electrostatics LN N e

Nonlinear Problem

T T
~— Galerkin
~— Non-intrusive
3 [

solution_Y
0.3735989

Enabling embedded UQ R&D on complex problems

111! Sandia National Laboratories

Simultaneous propagation leads to greater
performance

Scalability of the element-level derivative computation

Set of N hypothetical chemical species: | Jacobian Eval o Adjoint Eval
£ 600 £10
2XJ\=\ j—1+Xj—|—19 j:2,...,N—1 — —=—FD —
, ® 400(—*—FAD T 9
Steady-state mass transfer equations: i 102 kr
u-VY;j+ VY=o, j=1,...,N—1 |2 200 027 | > 8
N % 0 % . RAD
Z Y, =1 as 0 100 200 300 400 @ 0 100 200 300 400
= DOF Per Element DOF Per Element
- Sacado AD C++ operator %. 1000 Jacobian Eval 4%. - Adjoint Eval
overloading library (Trilinos) |8 —=—FD S RAD
. P ——FAD
- Charon implicit finite element |& &8
L 500 155 o
code o . © 57
= 0.94 =
© Y
o) 0 o 5.6
o 0 100 200 300 400 @ 0 100 200 300 400

DOF Per Element DOF Per Element
DOF per element = 4*N

111} Sandia National Laboratories

Simultaneous propagation of UQ sample points

“Non-intrusive” polynomial chaos
Simultaneous calculation of residuals & Jacobians
— Sacado overloaded operators
Simultaneous solution of block diagonal linear systems
— Reuse preconditioner
— Krylov basis recycling (Belos)
Simple stochastic PDE
— Albany implicit PDE code (Salinger et al)

Non-Intrusive Embedded Speed-Up
of uncertain | Solve Residual + Solve Residual + Solve | Residual + | Total
parameters Time Jacobian Time | Time Jacobian Time Jacobian
2 18 41 1 20 1.6 2 1.9
4 100 200 54 44 1.9 4.5 3.1
6 267 546 146 106 1.8 512 22
8 495 1094 315 245 1.6 4.5 2.8

111} Sandia National Laboratories

Ongoing and Future Work

 Incorporating Sacado types in Tpetra
— Indirect serialization appears to be a challenge

* Incorporating Sacado types in Kokkos MDArray
— Expression templates?
— Dynamic memory allocation?
— Threading within overloaded operators?

* Rearranging embedded UQ algorithms for
emerging multicore architectures

(1) sandia National Laboratories

Exploit large stochastic blocks for multicore
shared-memory parallelism

» Rearrange for an outer-spatial, inner-stochastic, ordering
— Obtain very large, nearly dense blocks
— Use sparse outer layout for distributed memory parallelism
— Use dense inner blocks for on-node shared memory parallelism

00 500 1000 1500 2000
T T

0 50 100 150 200 250 300
e

500 -

1000

A\

1500 = -

2000

Spatial sparsity Stochastic sparsity

* Requires heterogeneous multicore parallelism in complete
forward uncertainty propagation calculation

— Application fill
— Iterative solver matrix-vector productions
— Preconditioning

* FY12-14 SNL LDRD

111} Sandia National Laboratories

Concluding Remarks

 Enable embedded algorithms through
— Application code templating
— Operator overloading

 Numerous advantages
— Single templated code base to develop, test, maintain

— Developers for the most part don’t need to worry about embedded
algorithms

— Provides hooks for current and future embedded algorithms

* Main disadvantage is dealing with templates
— Templates are becoming ubiquitous in Trilinos

— Template metaprogramming ideas are becoming much more
common

— C++ Template Metaprogramming by D. Abrahams and A. Gurtovoy

— Some recent work by Argonne OpenAD group to automatically
transform code to use Sacado

+ But doesn’t work with templates!

!11 Sandia National Laboratories

Multicore and AD-based SG propagation
through application code

* Quadrature approach for an arbitrary intermediate operation:
P

a(y) = Z a;¥i(y), by) = Z bii(y), c(y) =) cii(y),

t=0
1
(¥3)

» 2 dense mat-vecs, for-loop, and dense mat-vec:

C:¢(aab) — C; =

Q
/Fcb(a(y), b(y) i (Y)p(y)dy = Y wid(a(y;), b(y;))vi(y;)

§=0

T = [;(y;)] € RETUXQTD " G = [a;] € RPF, b= [b;] € RPTL, &= [¢;] € RPH,
A = [a(y;)] € R, B = [b(y;)] € RO,
— A=9"a, B=9"bh, & =[w;p(A;,B;)] R, ¢=0

» Each scalar operation is replaced by dense matrix-vector products
and easily parallelized for loops
— Great opportunity for multicore parallelization

« Challenge: Designing overloaded operators that function
effectively on GPUs

Sandia National Laboratories

