Sundance: a Trilinos package for efficient development of efficient simulators

Kevin Long

Department of Mathematics and Statistics
Texas Tech University

Copper Mountain Trilinos Workshop
7 April 2008
Acknowledgements

Collaborators

- Ross Bartlett (Sandia)
- Catherine Beni (Caltech)
- Paul Boggs (Sandia)
- Roger Ghanem (USC)
- Vicki Howle (TTU)
- Rob Kirby (TTU)
- Jill Reese (Florida State)
- George Saad (USC)
- Bart van Bloemen Waanders (Sandia)
Kirby's Recursive Conundrum

Computers were invented to automate tedious, error-prone tasks. Computer programming is a tedious, error-prone task. (R. Kirby)
Kirby's Recursive Conundrum

Computers were invented to automate tedious, error-prone tasks. Computer programming is a tedious, error-prone task. (R. Kirby)

So why not program a computer to do it?
Our goal: simplify FEM simulation development without sacrificing performance

We want everything
Provide general multiphysics and intrusive capabilities, and a friendly user interface, and high performance

Our approach
- State in mathematical form the problems that arise “writing” an efficient intrusive code
- Write (by hand, once) a code to solve those meta-problems
Differentiation provides a path to automation

The mathematics of FEM system assembly is summarized as:

\[
\frac{\partial F}{\partial v_i} = \sum_\alpha \int_\Omega \frac{\partial F}{\partial D_\alpha v} D_\alpha \psi_i \\
\frac{\partial^2 F}{\partial v_i \partial u_j} = \sum_{\alpha,\beta} \int_\Omega \frac{\partial^2 F}{\partial D_\alpha v \partial D_\beta u} D_\alpha \psi_i D_\beta \phi_j
\]

(From KL, Howle, Kirby, and van Bloemen Waanders 2008)

The key idea

These equations bridge high-level problem specification and low-level computation. Fréchet differentiation connects:

- The abstract problem specification \(F \)
- The discretization specification: \(\psi, \phi \), and integration procedure
- The discrete matrix and vector elements \(\frac{\partial^2 F}{\partial v_i \partial u_j} \) and \(\frac{\partial F}{\partial v_i} \)
A plan for automation

<table>
<thead>
<tr>
<th>To make practical use of the “bridge theorem” we need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A data structure for high-level symbolic description of functionals F</td>
</tr>
<tr>
<td>- Integrands \mathcal{F} represented as DAG</td>
</tr>
<tr>
<td>- Automated selection of basis function combinations from element library, given signature of derivative</td>
</tr>
<tr>
<td>- Connection to finite element infrastructure for basis functions, mesh, quadrature, linear algebra, and solvers</td>
</tr>
<tr>
<td>- A top-level layer for problem specification</td>
</tr>
<tr>
<td>- A method to automate the organization of efficient in-place computations of numerical values of $\frac{\partial F}{\partial v}$, etc, given DAG for \mathcal{F}</td>
</tr>
</tbody>
</table>
Sundance: a Trilinos package for efficient development of efficient simulators

Sundance: a Trilinos package taking high-level abstractions to efficient code

Poisson-Boltzmann solver in a notebook

\[\nabla^2 u = \sinh u, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_N, \quad u = u_D \text{ on } \Gamma_D \]

\[\int_{\Omega} (\nabla \cdot \nabla u + \nabla \cdot \sinh u) \, ds - \int_{\Gamma_N} q \cdot n \, dl = 0 \quad \forall \, \nu \in \mathcal{H}^1 \]

with \(u = u_D \) on \(\Gamma_D \)

- use \(\mathbf{P} \) for \(u, v \)
- do integrals exactly when possible, with 4th-order Gauss otherwise
Sundance: a Trilinos package for efficient development of efficient simulators

Sundance: a Trilinos package taking high-level abstractions to efficient code

Poisson-Boltzmann solver in Sundance

```cpp
Mesh mesh = mesh.getMesh();

/* Create a cell filter that will identify the maximal cells */
CellFilter interior = new MaximalCellFilter();
CellFilter edges = new DimensionalCellFilter(1);
CellFilter left = edges.labeledSubset(1);

/* Create unknown and test functions, discretized using first-order */
LagrangeInterpolants *
int order = 1;
Expr u = new UnknownFunction(new Lagrange(order), "u");
Expr v = new TestFunction(new Lagrange(order), "v");

/* Create differential operator and coordinate functions */
Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

/* We need a quadrature rule for doing the integrations */
QuadratureFamily quad2 = new GaussianQuadrature(2);
QuadratureFamily quad4 = new GaussianQuadrature(4);

/* Define the weak form */
Expr eqn = IntegralInterior, (grad*U)*(grad*V) + V*exp(-U), quad2;

/* Define the Dirichlet BC */
Expr bc = EssentialBC(left, v*(u-1.0), quad4);

/* Create a discrete space, and discretize the function 1.0 on it */
DiscreteSpace discSpace(mesh, new Lagrange(order), vecType);
Expr u0 = new DiscreteFunction(discSpace, 1.0, "u0");

/* Create a TSF NonlinearOperator object */
NonlinearOperator<Double> F = new NonlinearProblem(mesh, eqn, bc, V, u, u0, vecType);
```
Math-based automated assembly is at least as efficient as matrix assembly in hand-coded, problem-tuned “gold standard” codes.

- Comparison of assembly times for 3D forward problems
 - Sundance uses same solvers (Trilinos) as gold-standard codes
- MP-Salsa and Fuego don’t allow intrusion
 - Can only compare forward problem performance
 - Comparisons do not include additional gains enabled by Sundance’s intrusive capabilities
Parallel scalability of assembly process

<table>
<thead>
<tr>
<th>Processors</th>
<th>Assembly time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>54.5</td>
</tr>
<tr>
<td>16</td>
<td>54.7</td>
</tr>
<tr>
<td>32</td>
<td>54.3</td>
</tr>
<tr>
<td>128</td>
<td>54.4</td>
</tr>
<tr>
<td>256</td>
<td>54.4</td>
</tr>
</tbody>
</table>

- Assembly times for a model CDR problem on ASC Red Storm
- Weak scalability means: assembly time remains constant as number of processors increases in proportion to problem size
- Results demonstrate Sundance is weakly scalable
How can user-friendly, intrusion-friendly code be fast?

High performance is a result of:

- Amortization of overhead
- Careful memory management
- Effective use of BLAS
- Work reduction through data flow analysis

With our unified formulation, effort spent tuning computational kernels applies immediately to diverse problem types and arbitrary PDE
Amortization, memory management, and BLAS

Amortize DAG traversal
- Process batches of elements and quadrature points

Minimize allocations and copies
- Maintain a stack of work vectors
- Automatically identify vectors that can be operated into
 - *e.g.* identify opportunities for $x+=y$ instead of $x=x+y$

BLAS
- Aggregate integral transformations, hit with level 3 BLAS
Pre-computation data flow analysis lets us avoid unnecessary work

Sparsity determination
- Don’t store or compute derivatives known to be zero or unused
- Distinguish spatially-constant from spatially-variable derivatives

We must track data flow through these operations:
- Multivariable, multiargument chain rule (special cases: +,-,×,/)
- Spatial differentiation

Set theoretical data flow analysis
- Tracks changes in sets of nonzero, constant, and variable derivatives through evaluation process
- Implemented using STL set/multiset classes
A key to high level simplicity without low performance: division of labor

Decouple user-level representation from low-level evaluation

Reduces human factors / performance tradeoffs
- User-level objects optimized for human factors
- Low-level objects optimized for performance

Allows interchangeable evaluators under a common interface
- Easy to upgrade, tune, and experiment with evaluators w/o impact on user
- Future: different evaluators for different architectures
Summary

- Mathematical formulation of discrete system assembly process enables automated transition from “blackboard” mathematics to efficient PDE simulation
- Automated assembly code compares favorably in both efficiency and scalability to “gold standard” simulators
- Our method transparently enables intrusive algorithms, realizing even greater performance gains for optimization, sensitivity, and UQ
- By developing a unifying mathematical framework for PDE simulation, our results can be applied to a wide range of types of discretization methods and physical problems

The one-sentence description

We use high-level symbolic components to automate the organization of low-level high-performance numerical computations