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Abstract

We discuss the design of MLAPI, an object oriented framework that enables the development and
usage of efficient, scalable and portable implementations of multilevel preconditioners for general dis-
tributed sparse matrices, in both serial and parallel environments.

The main feature of this framework is the use of several programming paradigms for the different
implementation layes, with a strong emphasis on object oriented classes and operator overloading for
the top layer, and optimized FORTRAN and C code for the layers underneath. In particular, MLAPI

takes advantage of ML [21], the algebraic multilevel preconditioning package of Trilinos [13].

We report several numerical experiments, obtained on serial and parallel computers, to show that
the overload required by the object-oriented layer is very modest, therefore allowing developers to focus
on the new algorithm they are developing and testing, rather than the implementation details, yet
obtaining a code whose efficiency and scalability is comparable with that of C or FORTRAN layers
underneath.
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1 Introduction

The parallel solution of large linear systems of type

Ax = b, (1)

where A is a (distributed) large, real sparse matrix and x and b two real multi-vectors, is the
computational kernel of many applications. The solution of such systems is a fundamental,
and often the most time consuming, part of many simulation codes. Because of the size of
A, iterative solvers of Krylov type are generally adopted [3], the best known methods being
the conjugate gradient [15] and GMRES [18].
It is well known that the convergence of Krylov methods depends on the spectral proper-

ties of the linear system matrix A [1, 17, 16]. Often, A is very ill-conditioned, so the original
system (1) is replaced by

P−1Au = P−1b

(left-preconditioning), or by
AP−1Pu = b

(right-preconditioning), using a linear transformation P−1, called preconditioner. P−1 rep-
resents a sequence of operations that somehow approximates the effect of A−1 on a vector.
Loosely stated, a preconditioner is any kind of transformation applied to (1) which makes
it easier to solve, in terms of iterations and CPU time; see for instance [9, 8, 23]. More
precisely, the general (and challenging) problem of finding an efficient preconditioner is to
identify a linear operator P with the following properties:

1. P is a good approximation of A is some sense. Although no general theory
is available, we can say that P should act so that P−1A is near to being the identity
matrix and its eigenvalues are clustered within a sufficiently small region of the complex
plane;

2. P is efficient, in the sense that the iteration method converges much faster, in terms
of CPU time, for the preconditioned system. In other words, preconditioners must be
selected in such a way that the cost of constructing and using them is offset by the
improved convergence properties they permit to achieve;

3. P or P−1 can be constructed in parallel, to take advantage of the architecture of
modern supercomputers.

A very successful class of preconditioners is represented by multilevel (or multigrid)
methods. A multilevel method tries to approximate the original PDE problem of interest
on a hierarchy of grids and use ‘solutions’ from coarse grids to accelerate the convergence
on the finest grid. Multilevel and multigrid methods were introduced in the late 70’s, and
their success and development is testified by the enormous literature and the several inter-
national conferences organized since then. At least three approaches have been presented in
literature to define the multilevel hierarchy: to use a sequence of grids, as done in geometric
multigrid [4, 10, 12] to coarsen on each level by identifying a set of coarser-level nodes (the
so-called C-nodes) and finer-level nodes (F-nodes) (see for instance [5, 11]), or to coarsen
on each level by grouping the nodes into contiguous subsets, called aggregates, as done
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MultiLevelStartUp(A, MaxLevels, k)

{

if (k == MaxLevels)

return;

else {

P[k] = BuildP();

R[k] = BuildR();

A[k] = R[k] * A[k] * P[k];

}

}

Figure 1: Pseudo-code of a the multilevel start-up procedure.

MultiLevelSolve(A, f, x, k)

{

if (k == CoarsestLevel)

u = CoarseSolver(A[k]), b);

else {

u = Smoother(A[k], f, u);

r = R[k] * (f - A[k] * u);

v = 0;

MultiLevelSolve(A[k + 1], v, k + 1);

u = u + P[k] * v;

u = Smoother(A[k], f, u);

}

}

Figure 2: Pseudo-code of a multilevel application procedure.

in smoothed aggregation [25, 26, 27]. Multilevel methods are well understood on model
problems, while their application to more general, non-symmetric, problems still requires
further developments.

Like most preconditioners, a multilevel preconditioner requires a startup procedure (a
common version of which is reported in Figure 1) and an application procedure (reported
in Figure 2). In the Figures, k is the current level, A is an array of matrices, with A[k]

the operator for level k and A[0] containing the matrix of the linear system (1), R[k] is
the restriction operator from level k to level k + 1, and P[k] is the prolongator operator
from level k + 1 to level k, CoarseSolver() is a generic direct solver, and Smoother() is a
generic smoother (that is, an approximate solver whose goal is to reduce the high frequencies
of the error).
The effectiveness of the multilevel algorithm heavily depends on how the operators

A[k], P[k], R[k] are defined. To leverage software development, it is preferable to code
the multilevel preconditioner in a general framework, based on abstract interfaces. Eventu-
ally, a wide range of preconditioners based on these abstract interfaces should be available so
that a method that matches the difficulty of the problem and the computational architecture
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available can be adopted.

Note that two distinct sets of operations can be identified in the multilevel procedures:

1. operations that require operators as unique identities (for example, the application of
an operator, y = A * x);

2. operations that require the specific knowledge of the structure of an operator and its
internal data (for instance, the definition of the prologator operator P[k]).

Our aim is to simply the coding of a multilevel algorithm, by allowing an intuitive syntax
for all operations in group (1), and by condensing operations in group (2) in well defined
functions (or classes).
Ideally, the code should not look too different from what we have just presented, which

in turn is just a modest change with respect to the mathematical standpoint used to define
a multilevel method. Unfortunately, this is not what happens in most codes. Traditionally,
coding is made complex by “details” inessential to the algorithm, like, for example, the
dimension of the input and output vector, of flags for the smoother or the matrix-matrix
product, or the parallel data layout.
Since these “details” are necessary to compile and run the program, our aim is the

following: let the compiler take care of the details, and let the programmer-developer to
focus on the algorithm. For example, any well designed implementation of a linear operator
already contains the number of rows and columns, and the implementation of a vector
contains the number of elements in the vector. By using a light layer of C++ and taking
advantage of operator overloading (see, for example, [22]), one can instruct the compiler on
how to look for all the necessary information, so that all operations are properly executed.

In this paper, we want to show that it is possible to obtain intuitive, easy-to-read and
easy-to-develop codes, that are at the same time efficient and scalable. This paper is
organized as follows. First, in Section 2 we will outline why an object-oriented interface
can be useful to develop multilevel preconditioners (and, more general, multilevel solvers).
Section 3 introduces the most important MLAPI classes, whose usage is presented in
Section 4. The MATLAB c© interface is detailed in Section 4.3. Numerical results are
reported in Section 5, where a smoothed aggregation multilevel code, written in plain C,
is compared with an OO code, implementing the same algorithm. We will show that the
overhead required by OO on modern compilers is negligible, the C++ being remarkably
shorter and easier to read and understand, and simpler to maintain and test. Section 6
outlines the conclusions.

2 Software Design

We have defined the MLAPI library to handle the definition of multilevel preconditioners
for sparse large linear systems of type (1) on distributed memory computers. Our aim
was to design develop a general framework, that is portable and straightforward to use,
while being both flexible and efficient. The design of the library is based on the following
principles:

Portability. Implementations of numerical algorithms should be directly portable across
machine platforms. MLAPI is written in ANSI C++. The STL library is employed to
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increase efficiency. For message passing, we adopted MPI, which is the de-facto standard,
and as such widely available and accepted by users of parallel applications. As a result,
MLAPI has been successfully compiled on Linux, SGI Origin, DEC-alpha, SUN, and MAC
OS X.

Clarity. Implementations of numerical algorithms should resemble the mathematical for-
mulation on which they are based. This is in contrast to FORTRAN and C, which can
require complicated subroutines or function calls, with a long parameter list. A key design
forMLAPI was a user interface that is intuitive. Our intention is that it should be possible
for this library to be used by those who have only a basic knowledge of MPI and C++.
Ideally, the structure of all MLAPI kernels should be as close as possible to the that of
MATLAB. We have developed two types of C++ interfaces to basic kernels. The first type
utilizes the binary operators *, +, -, overloaded using the C++ capabilities. The second
type is a set of interfaces (methods, functions) which can group triads or perform more
complex operations.

Flexibility. MLAPI is not based on any particular matrix format. This is particularly
convenient since several matrix formats are currently in used. MLAPI supports any data
format that can offer a getrow() function, which returns the column ID and the value of all
nonzero elements for any locally hosted row. C users can provide this using the ML Operator

structure, while C++ users can derive a class from the pure virtual Epetra RowMatrix

class of the Epetra package. Similarly, all operators defined by MLAPI are wrapped
as Epetra RowMatrix and ML Operator, so that users can access their nonzero elements
without worrying about the actual data storage used by MLAPI .

Extensibility. Multilevel algorithms are far from being completely understood for all
classes of problems. It is important for the multilevel library to be easily extended, to vali-
date new approaches. To that aim, encapsulation is used to hide details in specific classes.
Besides, a set of function based on abstract interfaces is provided, to generate the necessary
multilevel operators. Polymorphism allows the user to derive classes to implement new
features. All MLAPI classes and methods automatically use a set of default parameters,
that can be tuned by specifying the desired parameters in a parameter list.

High performance. A good numerical package that utilizes OO programming must exhibit
a computational efficiency that is comparable to that of FORTRAN and C codes. This puts
severe limitations to the OO design. It is certain easy to generate elegant but inefficient
C++ code. We implemented MLAPI as a light layer of C++, on the top of a mixture
of FORTRAN77 kernels (BLAS [7] and LAPACK [6]) for all dense matrix operations and
vector updates, C functions for all sparse matrix operations (like distributed sparse matrix-
matrix product), and C++, for memory management. The layer structure of MLAPI is
shown in Figure 3. Lower layers of the library indicates an encapsulation relationship with
upper layers. As a result, MLAPI is (almost) as efficient as the C or FORTRAN library
underneath.

Memory Management. One of the most powerful feature of C and C++ if the capability
of allocating memory. Unfortunately, this is also the area where most bugs are found –
not to mention memory leaks. We have adopted smart pointers to manage memory [2].
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Figure 3: Layer structure of MLAPI .

MLAPI objects should never be allocated using new, and therefore never free them using
delete. The code automatically deletes memory when it is no longer referenced by any
object. Besides, functions or methods that need to return MLAPI objects, should always
return an instance of the required object, and not a pointer or a reference.
At a first glance, this may appear as a major limitation for optimal performances. Deal-
ing with an instance of an object, and not with pointers or references, signifies that the
new instances have to be created and copied, usually an expensive operation. This is not

what happens with MLAPI. In fact, all MLAPI objects are defined as light containers of
pointers, automatically allocated and managed as necessary.
Let us consider three generic MLAPI objects. The assignment A = B means the following:
all smart pointers contained by B are copied in A, both A and B point to the same memory
location. However, A and B are not aliases: we can still write B = C, meaning that A contains
what was contained in B, and both B and C point to the same memory location. Should
we need to create a copy of C in B, we will use the instruction B = Duplicate(C), which is
instead an expensive operation, as new memory needs to be allocated, then all elements in
C need to be copied in B.

Operator overloading. Operator overloading is an interesting capability of C++ that has
been only partially used in the scientific computing community. We do not adopt expression
templates (see for instance [24]); instead, we create temporary vectors, then perform vector
operations (like updates, scaling, or DAXPY operations) using optimized BLAS routines
(whose use would not be possible using expressions templates). However, each overloaded
operator can be replaced, in a secondary optimization phase, by class methods, therefore
avoiding the creation of temporary objects, at the price of a more “conventional” coding.
For example, the operation x = a + b can be replaced by method Update() of x.
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Figure 4: Inheritance diagram for MLAPI classes.

3 MLAPI Classes

In this section we introduce the most important classes ofMLAPI : Space (analyzed in Sec-
tion 3.1), MultiVector (analyzed in Section 3.2), Operator (described in Section 3.3) and
InverseOperator (in Section 3.4). Furthermore, MLAPI furnishes two matrices classes,
SerialMatrix and DistributedMatrix, to set the matrix elements in a very intuitive way.
The inheritance diagram is reported in Figure 4. All classes are derived from a ba-

sic class, BaseObject. Entities that are mathematically equivalent to operators are derived
from BaseOperator class, which basically contains only method Apply(). Two concrete im-
plementations are Operator and InverseOperator. Classes Operator, InverseOperator,
MultiVector all derived also from CompObject and TimeObject. These two classes, not
described here, are used to count flops and track the time spent in given methods.
We note that MLAPI preconditioners can be easily wrapped as Epetra objects, and

therefore used by any library of application that understand Epetra (for example, Krylov
accelerators such as AztecOO, eigensolvers such as Anasazi, physics-based precondition-
ers as Meros, and the Trilinos API, TSF).

3.1 The Space Class

A Space is the fundamental MLAPI class. All distributed objects must have underlying
spaces, which define the global dimension of the object (for example, the total number of
elements in a vector) as well as the parallel layout (i.e., the distribution of these elements
across the processors). The easiest way to define a Space is by specifying the number of
global elements and/or the number of local elements,

int NumGlobalElements = 128;

int NumLocalElements = 16;

Space S(NumGlobalElements);

Space S2(-1,NumLocalElements);

In both cases, a linear distribution is implicitly assumed1. If a non-linear distribution is
required, one can simply write

int NumMyElements = 128;

int* MyGlobalElements;

// define here MyGlobalElements

Space S1(-1,NumMyElements,MyGlobalElements);

1That is, processor 0 hosts all elements with a global ID from 0 to NumLocalElements - 1, processor 1 from

NumLocalElements to 2 * NumLocalElements - 1, etc.
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where MyGlobalElements[i] is the global ID or local node i.
The global ID of local node i is returned using the operator ():

int LID = 2;

int GID = S(LID);

As all memory is managed using smart pointers, the users can let a object go out scope
even if this object has been used to define new objects. This is typically the case with
Space’s. Let us consider the following function:

MultiVector foo(int NumGlobalElements)

{

Space S(NumGlobalElements);

MultiVector V(S);

// do something on V, for example set all elements to 1.0

V = 1.0;

return(V)

}

Clearly, object S will go out of scope after returning from foo. However, the code will do
the following: as V is created, a Space object, say V2, is defined within V, so that V2 = V

(light-weight copy). All smart pointers in V are copied within V2, and V can go out of scope
without damaging the returned vector (and without memory leaks).

3.2 The MultiVector Class

MultiVector’s are theMLAPI class for distributed double-precision vectors. Once a space
(say, S) has been defined, vectors can be created as

MultiVector x(S), y(S); // specify the space in ctor...

MultiVector z; // ... or create empty vector

The number of local elements in a vector is returned by method GetMyLength(), and the
global number of elements by GetGlobalLength(). To set all the elements of a MultiVector
to the same value, say 2, simply type x = 2.0. To modify a given (local) element, one can
proceed as follows:

for (int i = 0 ; i < y.GetMyLength() ; ++i)

y(i) = 1.0 * x(i);

that is, a reference to the i−element of the vector is returned using operator (). The sum
of two vectors is simply

z = x + y; z = 2.0 * x - 3.0 * y;

The scalar product between x and y is x * y. The 2-norm is returned by method Norm2();
Random() populates the vector with random values; Reciprocal() replaces each element
with its inverse. Method GetValues() returns the pointer to the internally stored double
array. Note that efficient BLAS functions are used for copy and DAXPY operations.

Often, it is necessary to define a set of vectors, all sharing the same space. This can be
obtained as follows:
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int NumVectors = 3;

MultiVector w(S,NumVectors);

w.Random();

for (int i = 0 ; i < w.GetMyLength() ; ++i)

for (int j = 0 ; j < w.GetNumVectors() ; ++j)

cout << w(i,j) << endl;

All vectors in a multivector are stored in the same double array, consecutively.

It is also possible to create a MultiVector by providing an already allocated double
array:

Space S(-1, NumMyElements);

double* ptr = new double[NumMyElements];

// here populate ptr as necessary

MultiVector v(S, ptr, ownership);

assert (v(i) == ptr[i]);

By setting parameter ownership to true, then V will take care of deleting memory when
no objects refer to it2. By setting ownership to false, instead, the user will take care of
deleting ptr.

3.3 The Operator Class

An Operator is a (linear or nonlinear) map between two Space’s, the domain space and
the range space. An Operator object can be created by passing a pointer to an already
FillComplete()’d Epetra RowMatrix,

Epetra_RowMatrix* Epetra_A;

// create and FillComplete() here Epetra_A

Operator A(DomainSpace, RangeSpace, Epetra_A, ownership);

or by passing a pointer to an ML Operator struct:

ML_Operator* ML_A;

// create and populate here ML_A

Operator A(DomainSpace, RangeSpace, ML_A, ownership);

Finally, Operator’s can be defined by manipulating already existing objects. If A and B

are two existing Operator objects with suitable spaces, a new Operator C can be defined,
for example, as C = A + B, C = 1.0 * A + 3.0 * B, C = A * B. For the particular case
of triple matrix-matrix product, one can write D = GetRAP (A, B, C).
As ML, MLAPI is not based on any particular matrix format. Rather, its matrix

interface basically requires only a capability to query for the nonzero elements in a given
local row. Therefore, it is easy to interface a given application with MLAPI.

An Operator can be applied to a MultiVector,

Space DomainSpace(5);

Space RangeSpace(5);

2It is supposed that ptr has been allocated using new.
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MultiVector x(DomainSpace); x = 2;

MultiVector y(RangeSpace);

Operator I = Identity(DomainSpace, RangeSpace);

y = I * x;

For a symmetric positive definite matrix, the A-norm of a vector can simply be defined as
sqrt(z * (A * z)). Some basic operations on matrices are also supported. For example,
one can extract the diagonal of a matrix as a vector, then create a new matrix, containing
this vector on the diagonal

// A is an Operator

MultiVector z = GetDiagonal(A);

Operator D = GetDiagonal(z);

Function Eig() can be used to compute the eigenvalues of an Operator (for serial runs
only). This function calls LAPACK, therefore the Operator should be “small”.

MultiVector ER, EI, V;

Eig(A, ER, EI, V);

for (int i = 0 ; i < ER.GetMyLength() ; ++i)

for (int j = 0 ; j < ER.GetNumVectors() ; ++j)

cout << "ER(" << i << ", " << j << ") = " << ER(i,j) << endl;

3.4 The InverseOperator Class

A InverseOperator is a (linear or nonlinear) map between two spaces, the domain space
and the range space, whose application to a given MultiVector is meant to approximate the
action of a given Operator. The most important difference between an Operator and an
InverseOperator is that the latter has no definition of nonzero structure of matrix elements,
while Operator does. The only mathematical method implemented by InverseOperator

is Apply().
InverseOperator’s usually define smoothers and coarse solvers in a multilevel precon-

ditioner. At present, point relaxation smoothers (of Jacobi, Gauss-Seidel and symmetric
Gauss-Seidel), several incomplete factorizations and a complete LU factorization can be
used as smoothers and coarse solver. A simple example of usage here follows:

Operator A; // define the elements of A

Teuchos::ParameterList List;

List.set("smoother: sweeps", 2);

List.set("smoother: damping factor", 0.67);

InverseOperator invA(A, "symmetric Gauss-Seidel",List);

where 2 and 0.67 are the number of sweeps and the damping factor, respectively. A coarse
solver can be defined as

InverseOperator coarse(A, "Amesos-KLU");

which means that the KLU solver of Amesos will be adopted to compute the LU factor-
ization.
To apply the inverse of A using LU factorization one can write
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InverseOperator invA(A,"Amesos-KLU");

To verify that x = A−1Ax,

x = invA * (A * x) - x;

double NormX = sqrt(x * x);

3.5 The SerialMatrix Class

MLAPI offers a very simple and convenient matrix class, derived from the Epetra_RowMatrix
class. Using this class, the insertion of a new element is just A(row, col) = val. This class
can be used for serial computations only, and it is not meant to be efficient, just easy-to-
use. Users should consider other Epetra_RowMatrix derived classes to define parallel and
scalable matrices. Using class SerialMatrix, theMLAPI code may look like the following:

SerialMatrix A_Mat(S, S);

for (int i = 0 ; i < 10 ; ++i) {

if (i) A_Mat(i, i - 1) = -1.0;

A_Mat(i,i) = 2.0;

if (i + 1 != A_Mat.NumGlobalCols())

A_Mat(i, i + 1) = -1.0;

}

Note that SerialMatrix’s cannot be copied or reassigned, and no operators are overloaded
on this class. The only way to use an SerialMatrix with otherMLAPI objects is to wrap
it into an Operator, as done in the following line.

Operator A(S, S, &A_Mat, false);

The last parameter of the constructor is set to false because, in this example, the A_Mat
will be deleted by the user.

3.6 The DistributedMatrix Class

The DistributedMatrix class allows user to set the entries of a distributed matrix using
method SetElement(). Any process can set any element of the matrix (that is, both
elements in the locally hosted rows, as well as elements hosted by another process). In the
following example, processor 0 will set all the elements of the matrix.

DistributedMatrix A_Dist(MySpace, MySpace);

if (GetMyPID() == 0) {

for (int i = 0 ; i < MySpace.GetNumGlobalElements() ; ++i) {

if (i) A_Dist.SetElement(i, i - 1, -1.0);

A_Dist.SetElement(i, i, 2.0);

if (i + 1 != A_Dist.NumGlobalCols())

A_Dist.SetElement(i, i + 1, -1.0);

}

}
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The matrix must be ”freezed” by calling method FillComplete(), which computes all the
data structures that are required in order to use the matrix in a distributed environment.
Matrix elements cannot be added after the call to FillComplete().

4 Using MLAPI

This section briefly explain how to use MLAPI3. We also refer to the Doxygen documen-
tation for more details.

4.1 Initialize and Finalize the MLAPI Workspace

First, we need to initialize the MLAPI workspace, using Init() (which is automatically
called by MLAPI is the user forgets to do so). The workspace should be cleaned using
Finalize() to avoid memory leaks.
All MLAPI commands should be inserted in a try/catch block:

try {

... // here MLAPI stuff

}

catch (const int e) {

cout << "Integer exception, code = " << e << endl;

}

catch (...) {

cout << "problems here..." << endl;

}

4.2 Defining two-level Preconditioners

We now present how to define a 2-level additive preconditioner. Let A be the fine-level ma-
trix. C the coarse level matrix, and FineSolver and CoarseSolver the fine level smoother
and the coarse level solver, respectively. Let P be the prolongator from the coarse space to
the fine space4, then R is the transpose of P, and Galerkin projection is used to define C:

Operator A, C, P, R;

// define here A and P

R = GetTranspose(P);

C = GetRAP(R,A,P);

We will use symmetric Gauss-Seidel for the fine level, and LU for the coarse level:

InverseOperator FineSolver, CoarseSolver;

FineSolver.Reshape(A,"symmetric Gauss-Seidel");

CoarseSolver.Reshape(C,"Amesos-KLU");

The application of the preconditioner will read as follows:

3Compilable codes can be found in ml/examples/MLAPI.
4As MLAPI is based on ML, the user can easily build a prolongator operator based on smoothed aggregation process.
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void foo(MultiVector& b_f, MultiVector& x_f)

{

x_f = FineSolver(b_f); // smoother

r_c = R * r_f; // restriction to coarse

r_c = CoarseSolver_ * r_c; // solver coarse problem

x_f = x_f + P * r_c; // sum correction

}

4.3 Writing MLAPI Objects in MATLAB Format

It is often convenient to use MATLAB to analyze matrices and vectors. Distributed
MLAPI objects can dumped to a single, MATLAB compatible ASCII file, by using class
MATLABStream. Note that both serial and distributed objects are saved in just one file,
which will contain the global object (for example, a distributed matrix will be dumped
using global row and column ordering). MATLABStream behaves like a “normal” stream.
Objects can be saved in file by using the operator <<.
Let S, V, and A be a Space, a MultiVector and an Operator. First, we have to define

a MATLABStream object by specifying the file name,

MATLABStream matlab("mlapi.m");

Then, we specify the label of each operator, as this label will be used to define the name of
the object in the output file,

S.SetLabel("S");

V.SetLabel("V");

A.SetLabel("A");

Finally, we can simply write

matlab << "% a string comment is allowed\n";

matlab << S;

matlab << V;

matlab << A;

We can also mix objects with MATLAB commands,

matlab << "plot(eig(A))\n";

The output file is automatically closed. Note that it is not possible to write on file an
InverseOperator object, as this class only defines the action of the inverse of an operator
on a given vector.

5 Numerical Results

We now report some numerical results that compare the MLAPI implementation with a
more “standard” C code based on the ML library. A list of symbols used in this Section in
reported in Table 1, and the computers used in the numerical experiments are described in
Table 2.
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symbol meaning
n Size of the linear system matrix
p Number of processors used in the computation
constr Time in seconds to construct the preconditioner
appl Time in seconds to solve the linear system using PCG
iter Time in seconds for each iteration of PCG
total constr + appl

diff Additional total time required by MLAPI with respect to the ML

total time.

Table 1: List of symbols used in the Tables.

computer description
LINUX Pentium M 1.7GHz, using gcc version 3.2.2 20030222 (Red Hat

Linux 3.2.2-5)
DEC Compaq C V6.4-009 on Compaq Tru64 UNIX V5.1A (Rev. 1885)
SUN SPARC Sun using Solaris compilers
SGI 195 MHz MIPS R10000, using MIPSpro Compilers, Version

7.4.2m
CPLANT 500 MHz DEC Alpha processor, using Compaq C V65-001

Table 2: List of computers used in the numerical tests.

n ML MLAPI MLAPI-opt
2563 0.008 0.013 0.011
5123 0.035 0.053 0.038
7683 0.079 0.122 0.087
10243 0.137 0.217 0.154

Table 3: LINUX: Time in seconds for the computation of r = b − Ax using ML directly, or MLAPI , or
the optimized MLAPI code.

p ML MLAPI MLAPI-opt
1 0.089 0.11 0.093
4 0.096 0.12 0.098
16 0.098 0.12 0.099

Table 4: CPLANT: Time in seconds for the computation of r = b−Ax using ML directly, or MLAPI , or
the optimized MLAPI code. The matrix has size 5122 × p.

p ML MLAPI MLAPI-opt
1 0.22 0.28 0.22
4 0.27 0.34 0.41
16 0.42 0.50 0.47

Table 5: SGI: Time in seconds for the computation of r = b − Ax using ML directly, or MLAPI , or the
optimized MLAPI code. The matrix has size 5122 × p.
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ML MLAPI

n const appl total constr appl total diff

2562 0.92 3.05 3.97 1.02 3.09 4.11 3.52
5122 2.92 11.72 14.64 3.13 12.43 15.56 6.28
7682 5.59 32.32 37.91 6.69 34.10 40.79 7.59
10242 9.16 64.55 73.71 11.12 68.49 79.61 8.00

Table 6: LINUX: PCG solution of linear system (1) with a multilevel preconditioner.

ML MLAPI

n const appl total constr appl total diff

2562 4.95 33.17 38.12 6.53 36.48 43.01 12.82
5122 19.94 137.64 157.58 26.50 148.98 175.48 11.36
7682 44.94 379.09 424.03 59.08 408.17 467.25 10.19
10242 79.06 746.16 815.22 105.11 812.26 917.37 11.16

Table 7: SUN: PCG solution of linear system (1) with a multilevel preconditioner.

ML MLAPI

n const appl total constr appl total diff

2562 3.09 17.38 20.47 3.74 17.66 21.40 4.54
5122 12.43 70.57 83.00 15.21 71.57 86.78 4.55
7682 28.04 193.01 221.05 34.49 198.88 233.37 5.57
10242 49.95 388.99 438.94 60.78 397.13 457.92 4.23

Table 8: DEC: PCG solution of linear system (1) with a multilevel preconditioner.

ML MLAPI

p const iter constr iter

1 7.53 3.16 10.49 3.20
4 9.06 3.35 13.13 3.45
16 9.45 3.38 14.12 3.34

Table 9: CPLANT: PCG solution of linear system (1) with a multilevel preconditioner. The matrix has
size 5122 × p.

ML MLAPI

p const iter constr iter

1 15.79 6.94 19.06 7.11
4 16.57 7.29 20.40 7.46
16 19.45 8.40 23.78 8.59

Table 10: SGI: PCG solution of linear system (1) with a multilevel preconditioner. The matrix has size
5122 × p.
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Tables 3, 4 and 5 compares the ML and MLAPI approach for a basic kernel: the
computation of the r = b− Ax, using the ML library, MLAPI with operator overloading,
and without operator overloading (indicated in the table as MLAPI-opt). The MLAPI

code simply reads r = b - A * x, where r, x, b are MultiVector’s and A is an Operator.
The MLAPI-opt codes reads as follows:

A.Apply(x, r);

r.Update(1.0, b, -1.0);

therefore being more efficient, but somehow less obvious to understand. We can note that
the MLAPI with operator overloading is slower than the original ML version of about
50%, because of some additional checks performed by MLAPI and of required wrappers
for different vector formats, but mainly because of the creation of temporary objects. The
optimize MLAPI is only slightly slower that the C code.

We now consider the solution of linear system (1) using the conjugate gradient method,
preconditioned with a multilevel smoothed aggregation preconditioner. Tables 6, 7 and 8
compare the time required by ML and MLAPI for serial computations, while Tables 9
and 10 investigate how the two approaches compare in parallel environments, using a Linux
cluster (CPLANT) or an SGI Origin 3800. The matrix arises from a 2D or 3D Laplacian,
discretized with a classical 5-point formula. The multilevel hierarchy is constructed us-
ing classical smoothed aggregation for symmetric problems, with symmetric Gauss-Seidel
smoother, and LU solver on the coarsest level. For the parallel runs, we keep constant the
size of the local matrix, by storing 512× 512 rows on each processor.
We note that the time per iteration is almost equivalent, while the MLAPI construc-

tion time can be up to 50% larger than the ML time. This is due to the design require-
ments of MLAPI : in order to extend flexibility, all MLAPI operators are wrapped as
Epetra RowMatrix, and the global ID of all local rows and columns in computed, whileML

avoids this step for some the operators in the hierarchy. The difference between the ML

and MLAPI time can vary considerably on different architectures, the C++ code being
slower on order machines (like SUN). However, we note that the overhead of MLAPI can
be quantified in about 10% of the ML time. This holds for both serial and parallel com-
putations. This difference could be reduced by optimizing the creation of the multilevel
hierarchy, as well as the application of the preconditioner.

6 Concluding Remarks

Using C++ can greatly enhance clarity, reuse, and portability of numerical libraries. In our
C++ library, MLAPI, the implementation details are completely hidden at the algorithm
level, so that the resulting code greatly resemble the algorithm itself. This object oriented
framework is based on a carefully designed set of classes and operator overloading, and
allows the algorithm developer to write a parallel, efficient (C++) code in a MATLAB-like
style. Operations on MLAPI classes are then automatically translated by a (standard)
compiler into efficient code. The advantage of this approach is that the developer can focus
on the algorithm itself, without spending time on details that can be fixed by the compiler.
This reduces the time spent in writing and debugging the algorithm, at the only expense of
a minimal increase in the CPU time, that can be quantified in about 10% of increase with
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respect to optimize C code. We believe that this is a negligible factor in the development
and testing of new ideas, especially considering the time saved by the developer to write
the code itself. Besides, reported results show that the MLAPI code can be improved in a
secondary optimization phase.
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