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ML Features (1)
ML provides scalable multilevel/multigrid preconditioners.

Method types
Smoothed Aggregation (SA) - symmetric or nearly
symmetric problems.
Non-symmetric SA - non-symmetric problems.
MatrixFree - matrix-free SA.
DD / DD-ML - domain decomposition.
Maxwell - Maxwell’s equations.
RefMaxwell - new method for Maxwell’s equations.
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ML Features (2)
Simple Trilinos interface.

Teuchos::ParameterList driven options.
Has sensible defaults (override what you don’t like).

Parameter validation for accuracy.

MATLAB interface for some features (MLMEX).
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Using ML
// Start with a problem & build solver

Epetra_LinearProblem Problem(A, &LHS, &RHS);

AztecOO solver(Problem);

// Override any defaults

Teuchos::ParameterList List;

List.set("smoother: sweeps",2);

// Build the preconditioner

MultiLevelPreconditioner Prec(A,List);

solver.SetPrecOperator(Prec);

solver.Iterate(100,1e-12);// Solve
Recent Algorithmic (and Practical) Developments in ML – p.7/28



Outline
Introduction to ML.

Solving Maxwell’s Equations w/ RefMaxwell.

Repartitioning w/ Zoltan and Hypergraphs.

Conclusions & Future Work.

Recent Algorithmic (and Practical) Developments in ML – p.8/28



Target Applications

Electromagnetic phenomena modeled by Maxwell’s
equations occur in many Sandia applications.

HEDP: Wire arrays and liners for Z machine simulations.

Magnetic Launch: Coil & rail guns (ONR).

Code: ALEGRA & Trilinos/ML (SNL).
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Maxwell’s Equations

∇×
1

µ
∇× E + σE = 0 in Ω

n × E = 0 on Γ

n ×
1

µ
∇× E = 0 on Γ∗

∇×∇φ = 0 ⇒ large null space complicates discretization
+ solver.

Large jumps in σ.

Significant mesh stretching.

Large problems & repeated solves
→ Scalable linear solvers are critical.

Recent Algorithmic (and Practical) Developments in ML – p.10/28



Continuous/Discrete Relationship
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Hodge Laplacian
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Discrete Hodge Decomposition
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w/o changing answer!
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Preconditioning

[

M1D
∗

1
D1 + M1D0D

∗

0
+ M1 M1D0

M0D
∗

0
M0D

∗

0
D0

] [

a

p

]

=

[

b

D
T
0
b

]

.

Use preconditioner:
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This preconditioner is implemented in ml/src/RefMaxwell in
Trilinos 8.0.
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3D Weak Scaling

Problem Code: ALEGRA (SNL).

Problems: LinerF, Sphere.

Material Parameters: 1e6 jump in conductivity.

Geometry: Regular meshes.

Compare Maxwell vs. RefMaxwell
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Scaling: Old vs. New
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Jumbo Scaling: New
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Why Repartitioning?

Computation
Dominated

Communication
Dominated

Coarse grids ⇒ less work per proc ⇒ poor performance.

Solution: Move data to leave some procs idle.
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Why Repartitioning?
Goals

Move to a subset of processors
⇒ Increase computation to communication ratio.
Rebalance load.

Method
ML current supports RCB via Zoltan.
What about irregular meshes?
What about consistency between partitions at different
levels?
New Feature: Hypergraph Repartitioning.
⇒ To be released in Trilinos 9.0.
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What is a Hypergraph?
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Why Hypergraphs?
For (compressed row) matrix:

Vertices == rows.
Hyperedges == columns.
Weights == Communication volume for that edge ⇒

we·( # processors in edge - 1).

Why Hypergraphs?
Models structurally non-symmetric systems.
Models communication costs — esp. important for
non-homogeneous meshes.
Minimizes combined cost of application communication
and data migration.
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Zoltan at Work

680k rows, 2.3M nonzeros
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Conclusions
RefMaxwell

Handles jumpy coefficients well.
Utilizes existing technology.
Scalability up to 24.5k procs!

Zoltan & Hypergraph Repartitioning
Accurately models application and data migration
costs.
Good results on test problems.
Future: ML’s unstructured mesh applications.
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Future Directions
TOPS-II: Interface w/ PETSc.

Extreme Scalability.

Adaptive methods for circuit problems.

Improved multimaterial algorithms.
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