Recent Algorithmic (and Practical) Developments in ML

Chris Siefert

Ray Tuminaro, Jonathan Hu, Pavel Bochev, Erik Boman and Karen Devine

Sandia National Laboratories

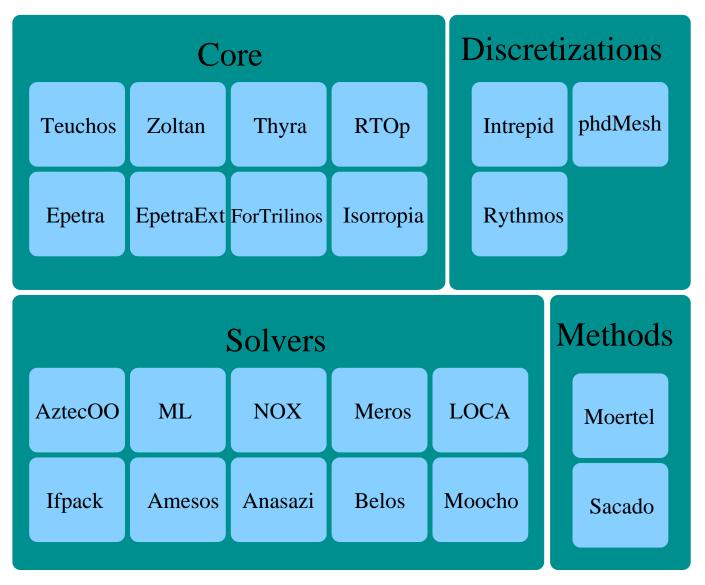
SAND # 2008-2180C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

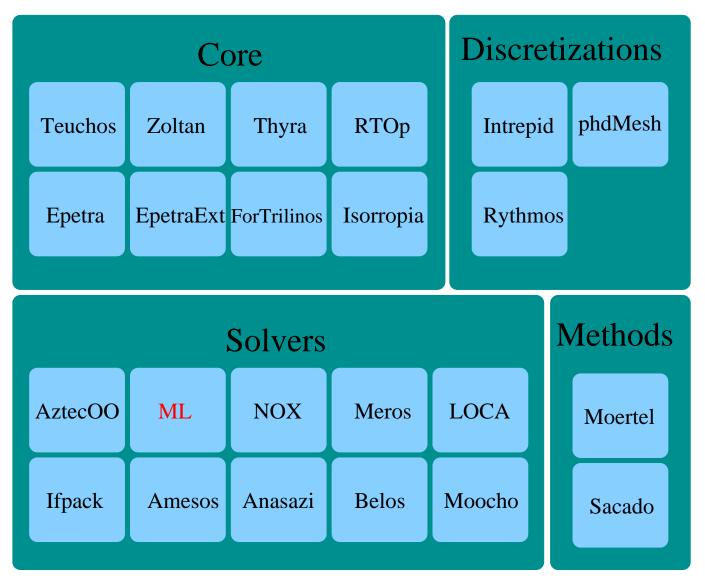
- Introduction to ML.
- Solving Maxwell's Equations w/ RefMaxwell.
- Repartitioning w/ Zoltan and Hypergraphs.
- Conclusions & Future Work.

Trilinos Summary



Sandia National Laboratories

Trilinos Summary



Sandia National Laboratories

ML Features (1)

- ML provides scalable multilevel/multigrid preconditioners.
- Method types
 - Smoothed Aggregation (SA) symmetric or nearly symmetric problems.
 - Non-symmetric SA non-symmetric problems.
 - MatrixFree matrix-free SA.
 - DD / DD-ML domain decomposition.
 - Maxwell Maxwell's equations.
 - RefMaxwell new method for Maxwell's equations.

ML Features (2)

- Simple Trilinos interface.
- Teuchos::ParameterList driven options. Has sensible defaults (override what you don't like).
- Parameter validation for accuracy.
- MATLAB interface for some features (MLMEX).

Using ML

// Start with a problem & build solver
Epetra_LinearProblem Problem(A, &LHS, &RHS);
AztecOO solver(Problem);

// Override any defaults
Teuchos::ParameterList List;
List.set("smoother: sweeps",2);

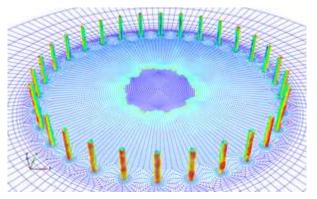
// Build the preconditioner
MultiLevelPreconditioner Prec(A,List);
solver.SetPrecOperator(Prec);

solver.Iterate(100,1e-12);// Solve

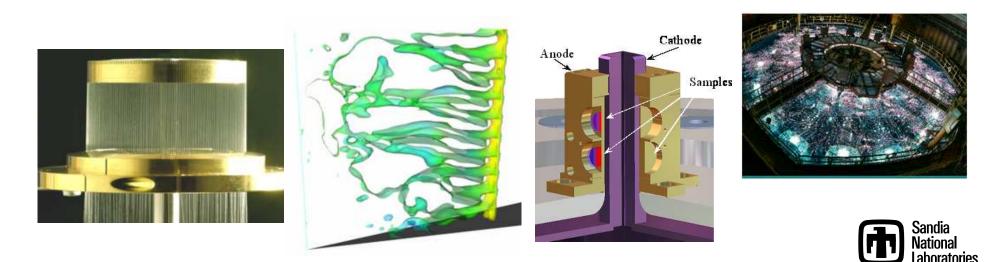
Outline

- Introduction to ML.
- Solving Maxwell's Equations w/ RefMaxwell.
- Repartitioning w/ Zoltan and Hypergraphs.
- Conclusions & Future Work.

Target Applications

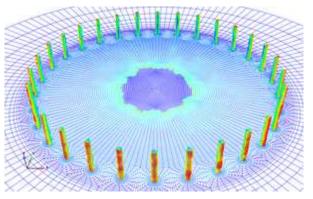


- Electromagnetic phenomena modeled by Maxwell's equations occur in many Sandia applications.
- HEDP: Wire arrays and liners for Z machine simulations.
- Magnetic Launch: Coil & rail guns (ONR).
- Code: ALEGRA & Trilinos/ML (SNL).

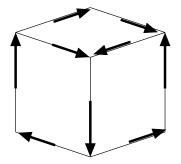


Maxwell's Equations

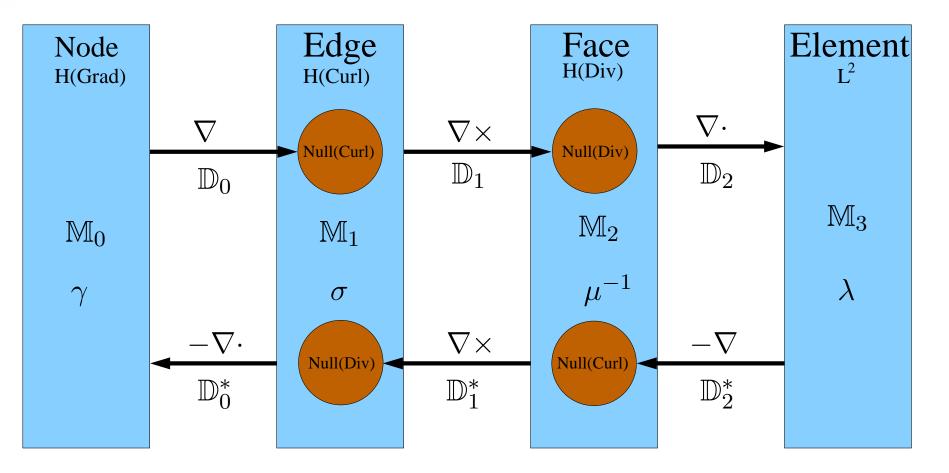
 $\begin{aligned} \nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} + \sigma \mathbf{E} &= 0 \quad \text{in } \Omega \\ \mathbf{n} \times \mathbf{E} &= 0 \quad \text{on } \Gamma \\ \mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} &= 0 \quad \text{on } \Gamma^* \end{aligned}$



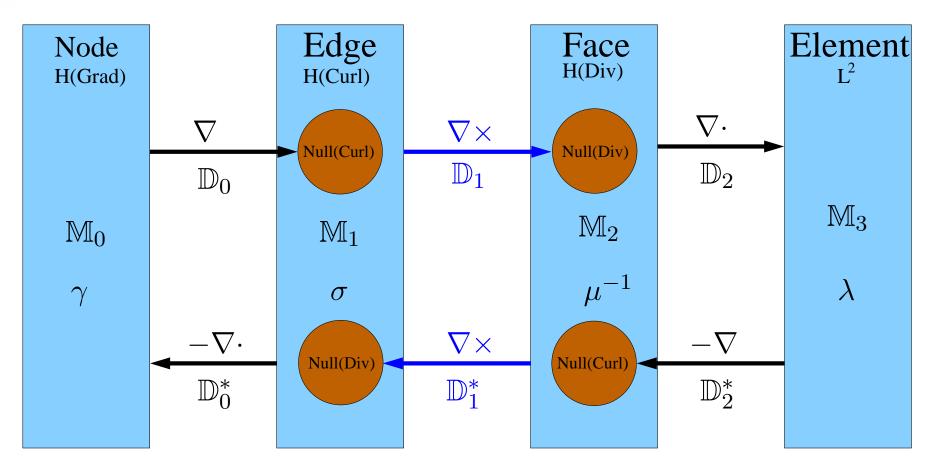
- Large jumps in σ .
- Significant mesh stretching.
- Large problems & repeated solves
 Scalable linear solvers are critical.



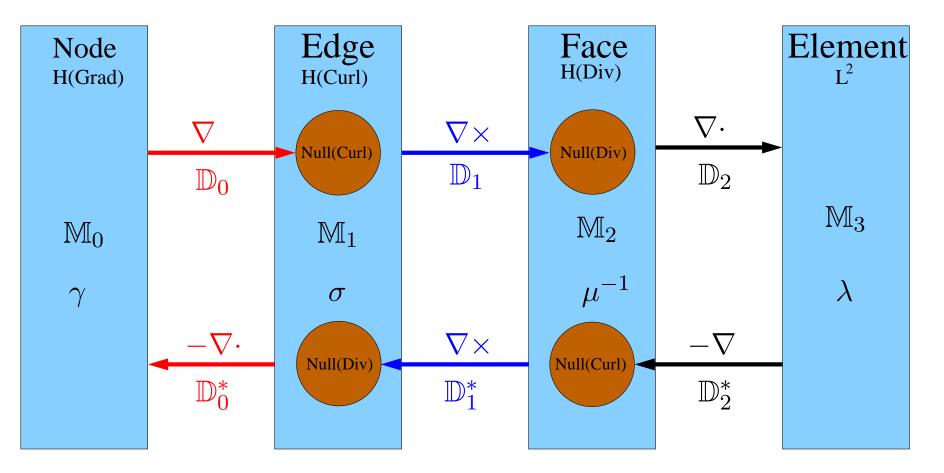
Continuous/Discrete Relationship



Continuous/Discrete Relationship



Hodge Laplacian



• $\Delta = \nabla \times \nabla \times + \nabla \nabla \cdot$.

Discrete Hodge Decomposition

 $(\mathbb{M}_1 \mathbb{D}_1^* \mathbb{D}_1 + \mathbb{M}_1)e = b$

Consider

$$e = a + \mathbb{D}_0 p,$$

where $\mathbb{D}_0^* a = 0$.

• This gives us the block 2×2 system

 $\begin{bmatrix} \mathbb{M}_1 \mathbb{D}_1^* \mathbb{D}_1 + \mathbb{M}_1 & \mathbb{M}_1 \mathbb{D}_0 \\ \mathbb{M}_0 \mathbb{D}_0^* & \mathbb{M}_0 \mathbb{D}_0^* \mathbb{D}_0 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} b \\ \mathbb{D}_0^T b \end{bmatrix}.$

Discrete Hodge Decomposition

 $(\mathbb{M}_1 \mathbb{D}_1^* \mathbb{D}_1 + \mathbb{M}_1)e = b$

Consider

$$e = a + \mathbb{D}_0 p,$$

where $\mathbb{D}_0^* a = 0$.

• This gives us the block 2×2 system

 $\begin{bmatrix} \mathbb{M}_1 \mathbb{D}_1^* \mathbb{D}_1 + \mathbb{M}_1 + \mathbb{M}_1 \mathbb{D}_0 \mathbb{D}_0^* & \mathbb{M}_1 \mathbb{D}_0 \\ \mathbb{M}_0 \mathbb{D}_0^* & \mathbb{M}_0 \mathbb{D}_0^* \mathbb{D}_0 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} b \\ \mathbb{D}_0^T b \end{bmatrix}.$

• We can add $\mathbb{D}_0\mathbb{D}_0^*$ w/o changing answer!

Preconditioning

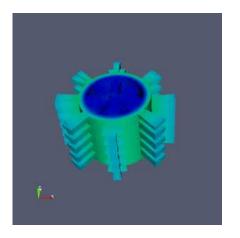
- $\begin{bmatrix} \mathbb{M}_1 \mathbb{D}_1^* \mathbb{D}_1 + \mathbb{M}_1 \mathbb{D}_0 \mathbb{D}_0^* + \mathbb{M}_1 & \mathbb{M}_1 \mathbb{D}_0 \\ \mathbb{M}_0 \mathbb{D}_0^* & \mathbb{M}_0 \mathbb{D}_0^* \mathbb{D}_0 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} b \\ \mathbb{D}_0^T b \end{bmatrix}.$
- Use preconditioner:

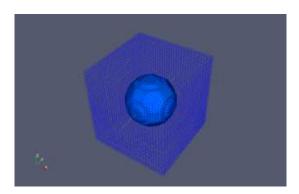
$$P^{-1} = \begin{bmatrix} I & \mathbb{D}_0 \end{bmatrix} \begin{bmatrix} \mathsf{AMG}_{11} & \\ & \mathsf{AMG}_{22} \end{bmatrix} \begin{bmatrix} I \\ \mathbb{D}_0^T \end{bmatrix}$$

This preconditioner is implemented in ml/src/RefMaxwell in Trilinos 8.0.

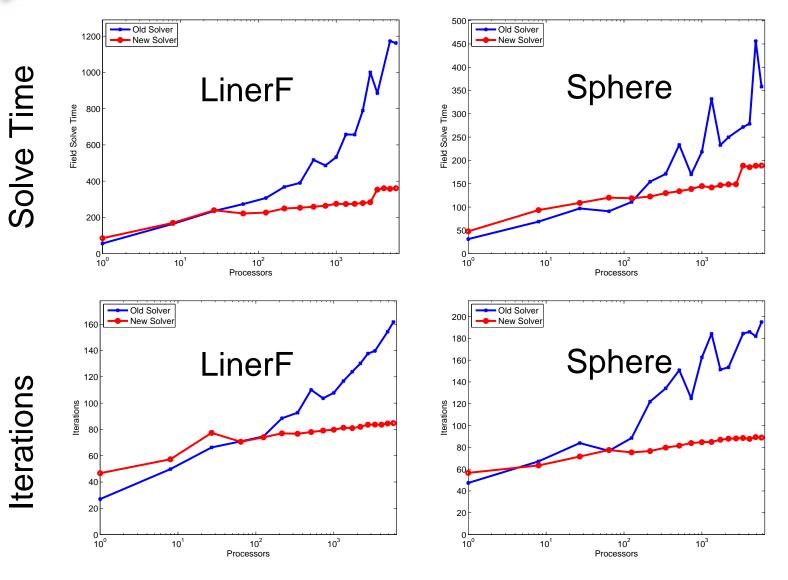
3D Weak Scaling

- Problem Code: ALEGRA (SNL).
- Problems: LinerF, Sphere.
- Material Parameters: 1e6 jump in conductivity.
- Geometry: Regular meshes.
- Compare Maxwell vs. RefMaxwell





Scaling: Old vs. New

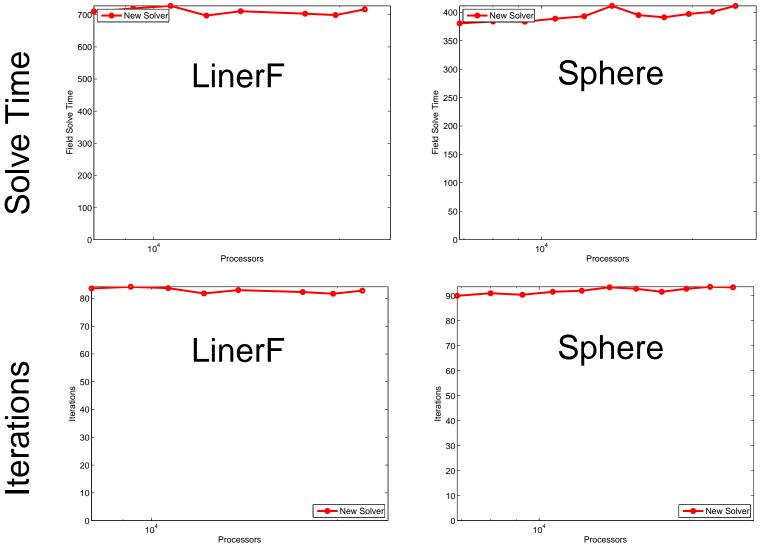


Number of Processors

Sandia

National Laboratories

Jumbo Scaling: New



Number of Processors

Recent Algorithmic (and Practical) Developments in ML - p.19/28

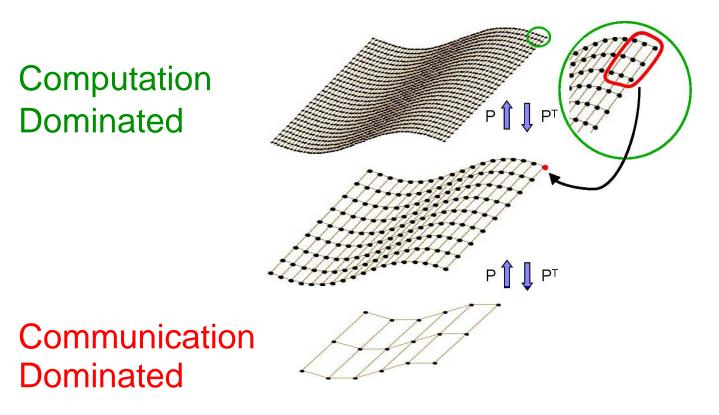
Solve Time

Outline

- Introduction to ML.
- Solving Maxwell's Equations w/ RefMaxwell.
- Repartitioning w/ Zoltan and Hypergraphs.
- Conclusions & Future Work.

Why Repartitioning?

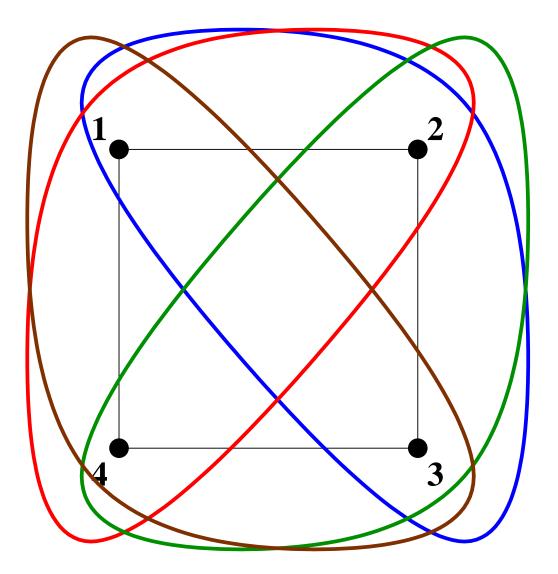
- Coarse grids \Rightarrow less work per proc \Rightarrow poor performance.
- Solution: Move data to leave some procs idle.

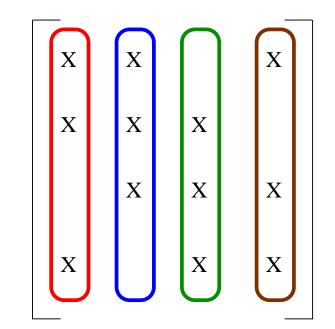


Why Repartitioning?

- Goals
 - Move to a subset of processors
 - \Rightarrow Increase computation to communication ratio.
 - Rebalance load.
- Method
 - ML current supports RCB via Zoltan.
 - What about irregular meshes?
 - What about consistency between partitions at different levels?
 - New Feature: Hypergraph Repartitioning. \Rightarrow To be released in Trilinos 9.0.

What is a Hypergraph?

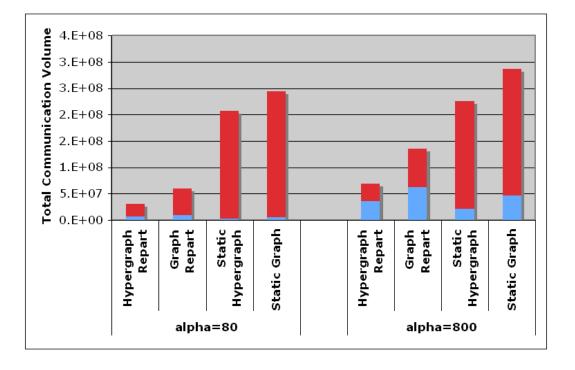




Why Hypergraphs?

- For (compressed row) matrix:
 - Vertices == rows.
 - Hyperedges == columns.
 - Weights == Communication volume for that edge \Rightarrow $w_e \cdot (\# \text{ processors in edge 1}).$
- Why Hypergraphs?
 - Models structurally non-symmetric systems.
 - Models communication costs esp. important for non-homogeneous meshes.
 - Minimizes combined cost of application communication and data migration.

Zoltan at Work



Application Execution Communication

680k rows, 2.3M nonzeros

Outline

- Introduction to ML.
- Solving Maxwell's Equations w/ RefMaxwell.
- Repartitioning w/ Zoltan and Hypergraphs.
- Conclusions & Future Work.

Conclusions

- RefMaxwell
 - Handles jumpy coefficients well.
 - Utilizes existing technology.
 - Scalability up to 24.5k procs!
- Zoltan & Hypergraph Repartitioning
 - Accurately models application and data migration costs.
 - Good results on test problems.
 - Future: ML's unstructured mesh applications.

Future Directions

- TOPS-II: Interface w/ PETSc.
- Extreme Scalability.
- Adaptive methods for circuit problems.
- Improved multimaterial algorithms.

