
Meros: Specialized Preconditioners for Problems with Coupled Simultaneous Solution Variables

Meros: Specialized Preconditioners for
Problems with Coupled Simultaneous

Solution Variables

Victoria E. Howle
Department of Mathematics & Statistics

Texas Tech University

Copper Mountain 2008, Trilinos Workshop
April 7, 2008



Meros: Specialized Preconditioners for Problems with Coupled Simultaneous Solution Variables

In collaboration with:

Ray Tuminaro (Sandia National Labs)
Robert Shuttleworth (Exxon)
Howard Elman (University of Maryland)
John Shadid (Sandia National Labs)
David Silvester (University of Manchester)



Meros: Specialized Preconditioners for Problems with Coupled Simultaneous Solution Variables

Outline

1 Problem Background
Incompressible Navier-Stokes
Schur Complement Preconditioners

2 Implementation in Meros

3 Results
MPSalsa
Sundance

4 Conclusions and Future Plans



Meros: Specialized Preconditioners for Problems with Coupled Simultaneous Solution Variables

Problem Background

Incompressible Navier-Stokes

Incompressible Navier-Stokes

αut − ν∇2u + (u · grad) u + grad p = f
−div u = 0

u = velocity; p = pressure; ν = viscosity
α = 0 steady-state; α = 1 unsteady flow

Linearization and discretization (possibly stabilized) leads to:[
F BT

B − 1
ν C

] [
u
p

]
=

[
f
g

]

B and BT are discrete divergence and gradient operators
F operates on the discrete velocity space
Generally C = 0 for div-stable discretizations; otherwise C is a
nonzero stabilization parameter
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Schur Complement Preconditioners

Consider preconditioners of the form

P =

[
F BT

X

]
This is an optimal (right) preconditioner when X is the Schur
complement S = BF−1BT + 1

ν C
The Schur complement is computationally expensive; so need to
approximate
We want the scalability of multigrid (h-independence)

Can be difficult to apply multigrid to whole system
X spectrally equivalent to S→ h-independence for P for Stokes
problem (Silvester & Wathen, 1994)

P−1 =

[
F−1

I

] [
I BT

I

] [
I

X−1

]
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Schur Complement Preconditioners

Suppose BT Fp = FBT and X−1 = Fp(BBT )−1

Then SX−1 = (BF−1BT )Fp(BBT )−1 = I (C = 0)

Pressure Convection-Diffusion preconditioner of Kay, Loghin,
and Wathen (2002) and Silvester, Elman, Kay, and Wathen
(2001)

S ≈ X = ApF−1
p Mp

Mp = pressure mass matrix associated with the pressure
discretization
Ap = discrete Laplace operator defined on pressure space.
Fp = discrete convection-diffusion operator defined on pressure
space.

This approach has a practical issue: user software must supply
Fp and Ap.
Other methods developed to minimize need for nonstandard
operators.
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Schur Complement Preconditioners

Least Squares Commutator
Elman, VH, Shadid, Shuttleworth, and Tuminaro (2006)

S ≈ X = (BM−1
∗ BT ) (BM−1

∗ FM−1
∗ BT )−1(BM−1

∗ BT ).

M∗ = (diagonal part of) velocity mass matrix

Stabilized LSC
Elman, VH, Shadid, Silvester, Tuminaro (2007)

Fully algebraic method:
X−1 = A−1

p (BM−1
∗ FM−1

∗ BT )A−1
p + αD

Ap = (BM−1
∗ BT + γC); simple formulas for α and γ;

D = diag(B(diag F )−1BT + C)
“Element-based” method:

X−1 = A−1
P (BM−1

∗ FM−1
∗ BT + ν

h4 C)A−1
p

Ap = B(M−1
∗ )BT + 1

h2 C
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Implementation in Meros

Block algorithms implemented in Meros package
Scalable block preconditioning package within Trilinos
Currently implements several block methods

pressure convection-diffusion
least squares commutator
SIMPLE

Publicly released (LGPL) within Trilinos
Based on Thyra abstract interface
Uses Thyra, Teuchos, AztecOO
Accepts Thyra linear operators and Epetra matrices
Tested in internal version of MPSalsa (incompressible flow code)
with good results
Tested in Sundance: good preliminary results on microfluidics
problems
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Implementation in Meros

Trilinos provides parallel linear algebra kernels (Epetra), an
abstract interface that allows block and composed operations
(Thyra), solvers (AztecOO, Belos, ML), etc.
With Thyra, we can easily write block systems that reflect the
mathematical algorithms. E.g., in PCD preconditioner:
Finv = inverse(*FSolveStrategy , F, ...);
Apinv = inverse(*ApSolveStrategy , Ap, ...);
Mpinv = inverse(*MpSolveStrategy , Mp, ...);
Xinv = Mpinv * Fp * Apinv;
Ivel = identity<double>(Bt.range());
Ipress = identity<double>(Bt.domain());
ConstLinearOperator<double> zero;
P1 = block2x2( Finv, zero, zero, Ipress );
P2 = block2x2( Ivel, (-1.0)*Bt, zero, Ipress );
P3 = block2x2( Ivel, zero, zero, (-1.0)*Xinv );

PCDprec = P1 * P2 * P3;

(Glossing over templates, typing, and some other arguments.)

P−1 =

[
F−1

I

] [
I BT

I

] [
I

X−1

]
X−1 = M−1

p FpA−1
p
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Implementation in Meros

At the user level, we need to specify which preconditioner, and
provide parameters for subsolves (or accept defaults).
For example, for the PCD preconditioner:
merosPrecFac = new PCDPreconditionerFactory(
SolveStrategies or ParameterLists for F, Ap, Mp );

Prcp = merosPrecFac->createPrec();
PCDOpSrc = rcp(new PCDOperatorSource(blockOp, Fp, Ap, Mp));

merosPrecFac->initializePrec(PCDOpSrc, &*Prcp);

Then we specify an outer solver strategy (param list) and do the
solve:
Pinv = Prcp->getRigthPrecOp();
saddleInv = new InverseOperator(blockOp * Pinv, azSaddleStrategy);

solnblockvec = saddleInv * rhs;
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Results

MPSalsa

Steady 3D lid driven cavity in MPSalsa

Re Mesh size DD PCD (Meros) Nprocs

10 32× 32× 32 67.0 28.0 1
64× 64× 64 159.8 28.4 8

50 32× 32× 32 62.2 40.2 1
64× 64× 64 162.6 47.8 1

100 32× 32× 32 61.7 56.0 1
64× 64× 64 168.5 62.1 1

DD is default domain decomposition
PCD is pressure convection-diffusion preconditioner
Results show average number of outer linear iterations per
Newton step
DD was faster on 1 proc.; PCD was faster on 8 procs.
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Results

MPSalsa

Steady 2D flow over a diamond obstruction in
MPSalsa

Re Unknowns DD PCD (Meros) Nprocs

10

64K 110.8 20.5 1
256K 284.6 22.5 4
1M 1329.0 22.9 16
4M NC 29.4 64

25

64K 101.7 32.9 1
256K 273.8 35.9 4
1M 1104.8 38.3 16
4M NC 48.0 64

40

64K 70.4 54.6 1
256K 203.9 70.1 4
1M 997.1 65.4 16
4M NC 79.8 64
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Results

Sundance

Microfluidics in Sundance

Meros used in Sundance in modeling the design of a microfluidic
mixing device

induced charge electroosmosis, by which flow through device is
driven by a set of charged obstacles
optimizing (APPSPACK) shape and orientation of the obstacles to
maximize fluid mixing within device
constrained optimization problem; function evaluations require
numerical solutions of PDEs

electrostatic potential equation
incompressible Navier-Stokes (most expensive)
mass transport

Shuttleworth, Elman, Long, Templeton
See Bob Shuttleworth’s talk on Thursday
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Conclusions
Using problem structure to develop preconditioning methods
Methods implemented in Meros
Meros released LGPL within Trilinos
Extended to stabilized discretizations
Tested and used in problems in MPSalsa and Sundance with good
results

Ongoing efforts
Implement other methods in Meros

stabilized LSC methods
other preconditioners

Documentation
Connections to Belos, Stratimikos, PyTrilinos, etc.
Other work on the methods themselves, e.g.

NS coupled with other physics (e.g., chemically reactive flow)
boundary conditions for PCD
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