LifeV: applications, design, and parallel framework

Simone Deparis
CMCS–MATHICSE–SB–EPFL
EPFL Lausanne, Politecnico di Milano, INRIA, Emory University

Trilinos User Group meeting, SANDIA, November 1st 2011
Acknowledgements

LifeV community http://www.lifev.org
Trilinos community http://www.trilinos.org
EPFL, Politecnico di Milano, INRIA, Emory University
FNS, FP6 (Haemod), FP7 - ERC-AdvG (Mathcard), HP2C, Aneurisk, ...
LIFEV project

Finite Element Library for the solution of PDEs

- C++, object oriented
- parallel and serial versions
- distributed under LGPL
- about 30 active developers

- CMCS – EPFL
- E(CM)2 – Emory
- MOX – Polimi
- REO, ESTIME– INRIA

Research code oriented to the development and test of new numerical methods and algorithms
Aim: effective tool for solving complex ”real-life” engineering problems
History

<2001 Lifel, Lifell, LifellII: Fortran 2D finite element codes (CRS4, Politecnico di Milano, CMCS)

2001 early development of LifeV at Politecnico di Milano, INRIA, and EPFL (leaders A. Quarteroni, L. Formaggia, A. Veneziani, J.F. Gerbau)

2006 development of the parallelism in LifeV. Inclusion of Trilinos (G. Fourestey, S. Deparis).

2008 E(CM)2 – Emory University joins the project
Developers and target users

Research code oriented to the development and test of new numerical methods and algorithms

Developers are:

- Researchers
- Post docs
- PhD students

Target users are the developers themselves, master students, and other researchers.

Aim: effective tool for solving complex “real-life” engineering problems

Medium term target is to make LifeV more accessible to external users.
Development tools

- Autotools, Automake — transition to CMake
- nightly builds in opt and debug modes
- collaborative tool: Git
- Gforge system cmcsforge.epfl.ch
- Google groups for mailing lists
- Google app educational for lifev.org
Were there alternatives to Trilinos that you investigated? If so, what made you decide to use Trilinos?

Yes, the most competitive alternative was petsc. However we found Trilinos more mature and with a larger set of tools (actually packages). Trilinos allowed us a smooth switch to MPI and offers interfaces to this API. It was also important that the source is written in c++ and that the following tools are provided:

- distributed sparse matrix data-structures
- linear system solvers and preconditioners
- parallel IO
- generalized eigenvalue solvers.
Trilinos’ Most Used Features

<table>
<thead>
<tr>
<th>Tools</th>
<th>Epetra stack</th>
<th>Tpetra stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel linear algebra</td>
<td>Epetra</td>
<td>Tpetra/Kokkos</td>
</tr>
<tr>
<td>Matrix tools and extensions</td>
<td>EpetraExt</td>
<td>Teuchos</td>
</tr>
<tr>
<td>Graph operations</td>
<td>Zoltan & Isorropia</td>
<td>Zoltan2</td>
</tr>
<tr>
<td>Iterative linear solver</td>
<td>AztecOO</td>
<td>Belos</td>
</tr>
<tr>
<td>Direct solvers</td>
<td>Amesos</td>
<td>Amesos2</td>
</tr>
<tr>
<td>DD preconditioners</td>
<td>Ifpack</td>
<td>Ifpack2</td>
</tr>
<tr>
<td>Multi-level preconditioners</td>
<td>ML</td>
<td>Muelu</td>
</tr>
</tbody>
</table>

An eventual migration of LifeV to the templated package stack of **Trilinos** is desired.
Overview of sofware design
Boundary Conditions

LifeV provides classes and methods to prescribe the most common boundary conditions *Dirichlet, Neumann, Robin, Defective* (flow rates).

Normal and tangential boundary conditions are also allowed for vectorial (3D) fields. In addition, a few kinds of boundary conditions specific for flow problems are available (absorbing, resistance or lumped parameter models).

Boundary conditions are prescribed by modifying the system matrix and the right-hand side after the assembling phase. **Parameters**: functions of the space and time or finite element fields.
LifeV provides the class `TimeAdvance` to integrate in time a generic non-linear PDE with derivates in time of order $m = 1, 2$. This class is virtual and defines the main features of a generic time advancing scheme:

- stores the unknown and its first (and second) derivatives;
- provides methods for the extrapolation (in time) of the unknown (and its first derivative);
- it computes the right-hand side associated to the discretization of the first (and second) derivative;
- it provides methods to update the states of the stored unknown.

The needed coefficients, variables and methods are specified in derived classes.
LifeV provides two different implementations, namely:

- **Backward Differentiation Formulae (BDF) schemes**
 (TimeAdvanceBDF.hpp) of order $p \leq 5$ for $m = 1, 2$;

- the family of methods obtained from the **Newmark** schemes
 for second order problems ($m = 2$), and the **theta-methods**
 for the first order problems ($m = 1$)
 (TimeAdvanceNewmark.hpp).
LifeV provides classes to quickly and easily perform the assembly of the Finite Element system matrix. Assemblers are building blocks that can be combined at will. In addition, the user has access to lower level structures and instructions in order to provide the maximal flexibility.

“Classical” FE implemented: continuous P1, P2, P1 bubble Raviart-Thomas
Importers and Exporters: Mesh format: GMSH, Inria, Netgen, mesh++. LifeV is designed with large parallel simulations in mind, which are usually performed on HPC hardware. LifeV allows to perform the mesh partitioning phase online, in parallel, or offline, on a workstation.

For postprocessing, class Exporter.hpp:
- Ensight (ExporterEnsight.hpp);
- HDF5 (ExporterHDF5.hpp);
- VTK (ExporterVTK.hpp).

We rely on ParaView for creating high quality visualizations.
Overview of the preconditioners in LifeV
E.g., **Navier-Stokes equations**

The Navier-Stokes equations for an incompressible viscous flow reads:

\[
\frac{\partial}{\partial t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p = f \quad \text{in } \Omega \\
\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega \\
\mathbf{u} = \varphi \quad \text{on } \Gamma_D \\
\nu \frac{\partial \mathbf{u}}{\partial n} - pn = 0 \quad \text{on } \Gamma_N
\]

where \(\Gamma_D \) and \(\Gamma_N \) are the Dirichlet and Neumann parts of the boundary respectively, \(\mathbf{u} \) is the fluid velocity, \(p \) the pressure, \(\nu \) the kinematic viscosity of the fluid, and \(f \) the external forces.
E.g. with semi-implicit Euler scheme:

\[
\frac{u^{n+1} - u^n}{\Delta t} + u^n \cdot \nabla u^{n+1} - \nu \Delta u^{n+1} + \nabla p^{n+1} = f \quad \text{in } \Omega \\
\nabla \cdot u^{n+1} = 0 \quad \text{in } \Omega \\
u^{n+1} = \varphi \quad \text{on } \Gamma_D \\
\nu \frac{\partial u^{n+1}}{\partial n} - p^{n+1}n = 0 \quad \text{on } \Gamma_N
\]

FE discretization using $P_2 - P_1$ finite elements:

\[
\begin{pmatrix}
F(U^n) & B^T \\
B & 0
\end{pmatrix}
\begin{pmatrix}
U^{n+1} \\
P^{n+1}
\end{pmatrix}
=
\begin{pmatrix}
G^n(U^n) \\
0
\end{pmatrix}
\]
The `PreconditionerComposition` class exploits the block structure of the FE matrix A to create preconditioners.

$$A = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}$$

The class is able to

- manage **composition of operators** obtained by factorizing the matrix A.
- replace the inverses of operators by **embedded preconditioners** (e.g. ML, AAS).
Preconditioning strategy

Let us consider the example of the Pressure Convection-Diffusion (PCD) preconditioner:

$$P = \begin{pmatrix} F & B^T \\ 0 & -\hat{S} \end{pmatrix}$$

where

$$\hat{S} \approx A_p F_p^{-1} M_p$$

is an approximation of the Schur complement $S = BF^{-1}B^T$.

The PCD is implemented in LifeV as a child class of PreconditionerComposition class.

The PCD is factorized into five operators:

\[P^{-1} = \begin{pmatrix} F^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & -B^T \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -M_p^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & F_p \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & A_p^{-1} \end{pmatrix}. \]

The inverses \(F^{-1}, M_p^{-1} \) and \(A_p^{-1} \) are replaced by embedded preconditioners.
GMRES iterations

(a) Coarse mesh

(b) Fine mesh

GMRES iterations
Computing the preconditioner

(c) Coarse mesh
Strong scalability to assemble the preconditioners.
Palu@CSCS, Cray XE6.

(d) Fine mesh
(e) Coarse mesh
(f) Fine mesh
Strong scalability of the preconditioned iterations.
Palu@CSCS, Cray XE6.
The efficiency of the preconditioners inheriting the class `PreconditionerComposition` relies on the embedded preconditioner;

- Typical embedded preconditioners make intensive use of the ML and Ifpack packages in Trilinos;
- Collaboration with E. Cyr (Teko), J. Gaidamour, J. Hu, and C. Siefert (ML, mueLU): Experimentation of techniques for the preconditioners to achieve fast solve on parallel machines.
Hardware

- modern supercomputers or clusters are not flat
- a mix of distributed and shared memory parallel hardware
- non-uniform memory access (NUMA) node architecture is most common
- memory and interconnect bandwidth are at a premium

LifeV

- parallelism through domain-decomposition (DD)
- still an MPI only implementation
- parallel operation is more or less hardware agnostic
- better use of hardware is possible with architecture aware algorithms
Each stage could take advantage of hybrid parallel hardware:

- parallel preprocessing on subdomains
- hybrid parallel solvers and preconditioners
- parallel and/or asynchronous I/O

All stages of the simulation pipeline have to be upgraded, to maintain efficiency!
What is LifeV
Software design
Solvers and Applications

Parallel finite element loop

Each stage could take advantage of hybrid parallel hardware:
- parallel preprocessing on subdomains
- hybrid parallel solvers and preconditioners
- parallel and/or asynchronous I/O

All stages of the simulation pipeline have to be upgraded, to maintain efficiency!
Parallel assembly of the linear system
(Ongoing work)

- Multi-threaded assembly is useful with a multi-threaded or hybrid parallel solver.
- Graph coloring on the mesh assures thread-safety (*Zoltan* package from *Trilinos*).
- This is a scalable solution inside a uniform memory region.
- It’s not scalable to an entire NUMA node.

Figure: Example of coloring a 2D triangular mesh. Courtesy of Linnea Duvall.
PARALLEL ASSEMBLY PERFORMANCE

Figure: Speedup Cray XE6

NUMA 4 x 6 cores per node

Figure: Speedup BG/P

UMA 4 cores per node
The Algebraic Additive Schwarz (AAS) Preconditioner

\[P_{AS}^{-1} = \sum_{i=1}^{N} P_i A_i^{-1} R_i \]

- \(R_i \) is the restriction operator, \(P_i \) is the prolongation operator, \(A_i^{-1} \) is an exact or inexact local solve on subdomain

- Number of GMRES iterations increases with the number of subdomains
- Using the implementation from Ifpack
- No parallel way to solve the local problems
- 1:1 relationship between number of subdomains and number of MPI ranks
 - Could get better scalability by unlocking these two numbers
Flexible MPI subcommunicator functionality for Ifpack is under development.

It will be possible to use multiple MPI ranks inside a subdomain or span multiple compute nodes with a single subdomain.

It is designed to be used in conjunction with a parallel subdomain solver.

ShyLU (Scalable hybrid LU) package:

- developed at Sandia National Labs by Erik Boman and Siva Rajamanickam
- a hybrid subdomain solver:
 - hybrid parallel: uses MPI and multiple threads
 - hybrid algorithm: direct and iterative techniques

ShyLU is still not ready for public use.
Solvers and Applications

Physical solvers and applications
The Darcy equations describe a fluid flow through a porous medium. The implementation of the solver (DarcySolver.hpp) uses the dual-mixed-hybrid formulation, entailing good approximation of the velocity field as well as of the pressure field. The global system in saddle point form is recast to an equivalent positive definite system, using the hybridization and static condensation procedure.

FE spaces: P_1 for the pressure and low order Raviart-Thomas for the velocity.
Darcy flow

A. Fumagalli and M. Kern

2 phase flow computation in a medium with a fault (i.e. highly heterogeneous). Water is injected at the top left, and displaces oil.

- fractional flow / global pressure formulation
- several 2D slices
- Darcy (parabolic): mixed finite elements
- Buckley Leverett (hyperbolic): Godunov solver

1.4 million tetra / 2.8 million dofs

64 cores, 25 time steps, 10 hours

256 cores, 195 time steps, 24 hours

SGI Altix, Genci, France.
Mesh partitioning
Pressure distribution
MOVIE
THREE PHASE FLOW IN THE LIVER
M. PEREGO, M. PICCINELLI E A. VENEZIANI
Despite their simple configuration, OSRs represent high efficiency solution for cell culture. However, the mechanisms acting in OSRs are poorly understood.

LifeV is used to

- better understanding the hydrodynamics in OSRs
- study gas transfers (mainly of oxygen and of carbon dioxide)
- simulate the cell growth and eventual sedimentation
Free surface flow with level set

Breaking wave

MOVIE
Balance of forces acting on a body \mathcal{B}_0:

$$\rho_s \frac{\partial^2 \hat{\eta}}{\partial t^2} = \rho_s b + \text{Div}(P) \quad \forall \mathbf{X} \in \mathcal{B}_0 \times [0, T]. \quad (1)$$

- ρ_s is the solid density;
- $\hat{\eta}$ is the displacement field;
- P define the type of material is being modelled;
- b external loads;
THE STRUCTURAL SOLVER MODULE

Structural Solver

TimeAdvance
- BDF -1 to 5
- Newmark

Structural Material
- VenantKirchhoff ElasticData
- Linear Elastic
- St. Venant-Kirchhoff
- Neohookean
- Exponential

Assembly Elemental Structure
Main parts of the module:

- *StructuralSolver*, for the Newton method to Pb. (1);
- *StructuralMaterial & AssemblyElementalStructure*, to define the constitutive relation in Pb. (1);
- *VenantKirchhoffElasticData*: to insert the material parameters;
- *TimeAdvance*: to carry out the time discretization of Pb. (1).

[PhD thesis M-R. De Luca, MOX 2009]
Electrical Activity in the Heart

Physiology The electrical signal dictates the contraction, the strain of the soft tissue activates ionic currents (electromechanical feedback).

Diseases Altered patterns of electrical signals may originate cardiac arrhythmias, yielding an ineffective mechanical contraction and poor fluid ejection volume.

Unsatisfactory Diagnostics The mere analysis of an electrocardiogram pattern may not reveal pathologies of the inner dynamics of the voltage signal in the heart.
Both bidomain (HeartBidomainSolver.hpp) and monodomain (HeartMonodomainSolver.hpp) models are available as models for the electrophysiology behavior of cardiac tissue. These models consist on anisotropic reaction-diffusion equations governing the propagation of electrical potentials, coupled with a system of ODEs describing the physics of the cellular membrane and time evolution of ionic quantities.

Several variants for membrane models are already present in the library: Luo-Rudy phase I, Rogers-McCulloch and Mitchell-Schaeffer models.

Currently with P1 Finite Elements.
Miocardium with scar.
L. Mirabella
MOovie
What is LifeV

Software design

Solvers and Applications

Electromechanical Activity in the Heart

R. Ruiz

PDEs for electrical propagation

Ionic currents

Electric potential

ODEs for ionic activity

Deformation

PDEs for nonlinear elasticity

Fiber stretch

Active strain generation

[Ca] concentration

potential
MOVIE
FLUID-STRUCTURE INTERACTION (FSI)
COUPLED PROBLEM

The ALE frame of reference

Figure: ALE mapping

ALE map \(A_t : \Omega_o^f \rightarrow \Omega_t^f \)

Property of the ALE derivative:

\[
\partial_t u_f|_{x_o}(x, t) = \partial_t u_f(x, t) + (w(x, t) \cdot \nabla) u_f(x, t)
\]

being \(w(x) = \frac{dA_t(x_o)}{dt} \), \(x = A_t(x_o) \), the fluid domain velocity.
MOVIE
The fluid model: ALE formulation

How to obtain w from a given vessel wall displacement d_s:

The Harmonic Extension equation for the fluid domain:

$$-\Delta d_f = 0 \quad \text{in } \Omega_f$$

$$d_f = d_s \quad \text{on } \Gamma_o$$

$$A_t(x_o) = x_o + d_f(x_o, t) \quad \forall x_o \in \Omega_o$$

Alternatives: replace Laplacian by:

- a linear elasticity problem;
- Stokes problem (w divergence free)

The Navier–Stokes equations in ALE form:

$$\rho_f \partial_t u_f|_{x_o} + \rho_f (u_f - w) \cdot \nabla u_f - \nabla \cdot \sigma_f = f_f \quad \text{in } \Omega_f$$

$$\nabla \cdot u_f = 0 \quad \text{in } \Omega_f$$

Boundary conditions

- $\Gamma_{in}, \Gamma_{out}$ and external wall: problem dependent
- on Γ_t: defined by the FSI coupling (transmission conditions)
FSI problem: coupling conditions

Continuity of stresses

$$\sigma_{os} \cdot n_o = J\sigma_f F^{-T} \circ A_t \cdot n_o = \text{on } \Gamma_o$$

Continuity of velocities

$$u_f \circ A_t = \frac{d}{dt} d_s \text{ on } \Gamma_o$$

Geometry adherence

$$A_t(x_o) = x_o + d_s(x_o) \text{ on } \Gamma_o, \quad \text{or} \quad d_f = d_s \quad \text{ on } \Gamma_o$$
Nonlinearities and discretizations

Nonlinearity due to
- convective term in Navier–Stokes equations;
- nonlinear equation for the structure;
- moving fluid integration domain.

Time and space discretizations
- fully implicit (FI)
- convective explicit (CE)
- geometry-convective explicit (GCE) (→ linear problem)

Galerkin Finite Element Method

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Structure</th>
<th>ALE</th>
<th>(Harmonic Extension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stabilized P1-P1</td>
<td>P1</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>P1 bubble-P1</td>
<td>P1</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>P2-P1</td>
<td>P2</td>
<td>P1</td>
<td>(straight triangles!)</td>
</tr>
</tbody>
</table>
Weak scalability, FSI

Meshes

<table>
<thead>
<tr>
<th>Length</th>
<th># Elements</th>
<th># Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 cm</td>
<td>75,480</td>
<td>14,487</td>
</tr>
<tr>
<td>1 cm</td>
<td>149,520</td>
<td>27,405</td>
</tr>
<tr>
<td>2 cm</td>
<td>301,920</td>
<td>53,997</td>
</tr>
<tr>
<td>4 cm</td>
<td>603,840</td>
<td>106,677</td>
</tr>
<tr>
<td>8 cm</td>
<td>1,207,680</td>
<td>212,037</td>
</tr>
<tr>
<td>16 cm</td>
<td>2,415,360</td>
<td>422,757</td>
</tr>
</tbody>
</table>

Fluid mesh

<table>
<thead>
<tr>
<th>Length</th>
<th># Elements</th>
<th># Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 cm</td>
<td>27,840</td>
<td>6,380</td>
</tr>
<tr>
<td>1 cm</td>
<td>55,680</td>
<td>12,180</td>
</tr>
<tr>
<td>2 cm</td>
<td>111,360</td>
<td>23,780</td>
</tr>
<tr>
<td>4 cm</td>
<td>222,720</td>
<td>46,980</td>
</tr>
<tr>
<td>8 cm</td>
<td>445,440</td>
<td>93,380</td>
</tr>
<tr>
<td>16 cm</td>
<td>890,880</td>
<td>186,180</td>
</tr>
</tbody>
</table>

Solid mesh
Weak scalability, FSI, GCE, on Cray XT5

Rosa
Mean pressure at aortic valve

The fluid and the solid meshes are partitioned in 2x32 subdomains. 380'690 tetrahedra and 486'749 dofs.

[Crosetto, Reymond, SD, Kontaxakis, Stergiopoulos, Quarteroni(2010 and 2011)]
Figure: Aorta simulation. Streamlines and WSS at the end of the systolic phase in the second heartbeat.
VAD connection to an Aorta
MD J. Bonnemain

WSS and streamlines (steady state simulation)
Recirculation and secondary flows, velocity magnitude

LifeV
J. Bonnemain @ CMCS
VAD

MOVIE
The equations of the 1-D model are (derivation in A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, 2004):

\[
\begin{align*}
\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} &= 0 \\
\frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\alpha \frac{Q^2}{A} \right) + \frac{A}{\rho} \frac{\partial P}{\partial z} + K_r \left(\frac{Q}{A} \right) &= 0 \\
P - P_{\text{ext}} &= \psi(A, A^0, \beta, \gamma) = \beta \left(\sqrt{\frac{A}{A^0}} - 1 \right) + \gamma \frac{1}{A\sqrt{A}} \frac{\partial A}{\partial t}
\end{align*}
\]

- $\alpha = \frac{1}{A} \int_S s^2 d\sigma$ is the Coriolis coefficient;
- $K_r = -2\nu s'(r)$ is the friction coefficient;
- $s = \theta^{-1}(\theta + 2)(1 - r^\theta)$ is the “assumed” velocity profile;
- β is the elastic coefficient of the wall;
- γ is the viscoelastic coefficient of the wall.
1D network can be seen as **oriented graphs**

edges stand for the 1D models

vertices represent the interfaces between the models.

vascular districts networks: *inflow* and *outflow* sections, ⇒ blood flow path ⇒ **orientation**

Data structures via **boost::graph library (BGL)**, providing a generic interface for traversing graphs.
The geometrical multiscale approach is a strategy for modeling the cardiovascular system, including the reciprocal interactions between local and systemic hemodynamics, i.e.:

- the effect of global circulation on specific components;
- the effect of local pathologies and diseases on the global system.

What is LifeV
Software design

Geometric multiscale I

Models and applications

- **3-D Fluid-Structure Interaction (FSI) models** for studying complex pathologies (e.g., aneurysms, stenoses, ...), or specific components which require a detailed geometrical description;

- **non-linear 1-D models of hyperbolic equations** for modeling the global network of arteries, in particular waves propagation;

- **0-D models** for modeling valves, pulmonary circulation, capillaries and other peripheral terminations, which can be described by few parameters.

The objective is to design a flexible framework where different ingredients can be mixed together.
GEOMETRIC MULTISCALE II

Ingredients

- **Models**: 0-D, 1-D, 3-D rigid fluid, 3-D FSI, ...;
- **Couplings**: pointwise, integrated/averaged, ...;
- **Algorithms**: semi-explicit; implicit with relaxed fix-point, Newton, Broyden. . . .

T. Passerini, M. Piccinelli, U. Villa, A. Veneziani, L. Formaggia. A. Quarteroni (oriented graph)

C. Malossi, P. Blanco, SD, A. Quarteroni (implicit coupling)
The objective is to design a flexible framework where different ingredients can be mixed together. Ingredients include models such as 0-D, 1-D, 3-D rigid fluid, 3-D FSI, and more; couplings such as pointwise, integrated/averaged, and others; and algorithms such as explicit or implicit with relaxed fix-point, Newton, Broyden, etc.

Framework C++ implementation

Abstract interfaces between models, coupling conditions, and algorithms.
From the geometrical viewpoint, we have two different scenarios for the couplings:

1. the models are defined in the same geometrical space
2. the models are defined in different geometrical spaces

Fluid averaged/integrated coupling quantities

Given a flat coupling interface Γ equipped with the outgoing normal n we have:

- **volumetric flow rate**: $Q = \int_{\Gamma} \mathbf{u} \cdot n \, d\Gamma$
- **normal stress**: $\Sigma = \frac{1}{|\Gamma|} \int_{\Gamma} (\sigma \cdot n) \cdot n \, d\Gamma$
MOVIE
1-D network results

- Right subclavian B, axillary, brachial
- Ascending aorta 2
- Right external iliac
- Thoracic aorta A
- Left common carotid
- Abdominal aorta A
1-D arterial network + 3-D FSI aorta

Problem Numbers

Models:
- 1 3-D FSI aorta;
- 95 1-D segments;
- 46 0-D windkessel RCR terminals.

Couplings:
- 98 coupling nodes;
- 243 coupling variables (unknowns).

Algorithms:
- 3-5 Broyden iters/time step;
- 30 CPU hours per heart beat (on 4 nodes = 32 cores).
MOVIE
LifeV developers

Alessandro Melani, MOX; Alessandro Veneziani, E(CM)2; Alessio Fumagalli, MOX; Alexis Aposporidis, E(CM)2; Antonio Cervone, MOX; Claudia Colciago, CMCS; Christian Vergara, MOX; Cristiano Malossi, CMCS; Gianmarco Mengaldo, MOX; Guido Iori, MOX; Gwenol Grandperrin, CMCS; Jean Bonnemain, CMCS; Laura Cattaneo, MOX; Luca Bertagna, MOX; Luca Formaggia, MOX; Lucia Mirabella, CFM Lab Marta D’Elia, E(CM)2; Matteo Pozzoli, MOX; Mauro Perego, CS - Florida State Univ. Michel Kern, ESTIME - INRIA Nur Fadel, MOX; Paolo Crosetto, CMCS; Radu Popescu, CMCS; Ricardo Ruiz Baier, CMCS; Samuel Quinodoz, CMCS; Simone Deparis, CMCS; Simone Pezzuto, MOX; Simone Rossi, CMCS; Tiziano Passerini, E(CM)2; Toni Lassila, CMCS; Tricerri Paolo, CMCS; Umberto Emanuele Villa, E(CM)2; ...