Energy-driven algorithms ... or energy-aware computing...

Vincent Keller

Facts (2005)

- Top 5 machines in the TOP500: 1-10 [MW]
- Power consumption for Data centers worldwide: 17,4 [GW]
- 1 mid-size nuclear power plant: 1 [GW]
- Power consumption needed by Data Centers doubles every 5 years

•

(Pessimistic) Estimation 2002 – 2022

Power Consumption in Data Centers Worldwide

(estimation based on Koomey, 2012)

Year

Energy in Data Centers Where is it used ?

(Jonathan G. Koomey, 2012)

Goal/Dream/Ads: Exascale (10¹⁸) in 2020

How ? (and why ?)

What vendors say

What vendors say (Al Gore version)

The vendors base all their forecasts (and R&D) on the performance of HPL (High Performance LINPACK) for the TOP500 and GREEN500 lists

HPL is a highly optimized application's kernel

HPL is purely CPU-bound: its performance (R_{max}) is very close to the CPU peak performance

Processor evolution (R_{max}) The Intel example

Peak performance of Intel processors

From 1998 (Pentium II/XEON) to 2012 (SandyBridge)

OK, the CPU performance follows the Moore's law for HPL.

What about the memory ?

Memory performance evolution

Memory peak transfer rate per link

From DDR (1998) to DDR3 (2012)

Nice correlated data, isn't it ?

No ! CPU performance grows exponentially while memory linearly.

So ... are our applications CPU or memory access dominated ?

Ax = b

- Many simulation codes can be "summarized" to the resolution of Ax = b. A is (probably) sparse and dim(x) « large enough »
- Let me define V_a, the "vectorization ratio": the number of operations that can be performed by the CPU per memory access (LOAD or STORE)
- If $V_a = 1$, each operand must be loaded from memory.
- This is the case for Ax = b

Consequence

- If V_a = 1 (or close), the application is purely memory bounded.
- Memory bandwidth and latency are the bottleneck
- CPU performance is not an issue

Comparison HPL and a memory-bound application

Computational efficiencies of a $V_a = \{1, 2, 3, 4\}$ application

Energy speaking...

• 3% of computational efficiency means:

- 3% of the CPU is used for what it is built for
- 97% of the CPU is not used (but the CPU does not stop)
- 97 % of the energy brought to the CPU is used to heat the air (or the water) around the data center

And we want to go for Exascale ?

OK, that is for a "pure" $V_a = 1$ application.

What about REAL applications Energy footprint ?

Test case

- Three applications
 - MiniFE (FEM)
 - CPMD (Car-Parinello)
 - GEAR (n-body)
- Three 2012 CPU models:
 - CPU1 is "low power"
 - CPU2 is "middle class"
 - CPU3 is "high performance"
- All three CPUs have the same instruction set and the same memory banks connected.

Power consumption is measured during execution...

An example: SNL MiniFE on 8 cores

MiniFE: "best approximation to an unstructured implicit finite element or finite volume application, but in 8000 lines or fewer."

Another example: n-body GEAR

GEAR on 8 cores

time [s]

A last example: Car-Parinello CPMD

CPMD on 8 cores

Energy To Solution

- $E = P \cdot t(E = \int p(t) dt)$
- Energy-driven computing → choice of the most efficient machine for a given algorithm
- TTS (Time-to-Solution) can differ. We strictly deal

with Energy

Energy-to-solution (in KJ)

Application	Number of cores	CPU1	CPU2	CPU3
MiniFE	2 cores	54.01	48.225	48.823
	4 cores	29.571	27.695	28.672
	8 cores	23.072	22.206	23.087
	16 cores	18.547	19.425	21.761
GEAR	1 core	1223.269	1010.254	982.307
	2 cores	734.507	644.846	636.732
	4 cores	420.228	382.701	385.091
	8 cores	258.579	246.42	254.397
	16 cores	224.916	231.221	252.747
CPMD	4 cores	666.9	658.952	698.769
	8 cores	407.248	433.001	477.28
	16 cores	350.794	364.845	467.274

So HAL, what is your conclusion?

"I am putting myself to the fullest possible use, which is all I think that any conscious entity can ever hope to do."

HELLO DAVE

DARKLORD

Conclusion

- Choose the best suited machine.
 - Ex: For a memory-bound application (V_a=1), a **vector architecture** is more suited
- Change the algorithm if your problem can be solved differently
- Help CPU founders to produce suited chips with a balanced FSB/Core frequency: CO-DESIGN

Conclusion

- **Exascale** in 2018 : probably possible.
- But (if we want to use it) :
 - Not with the current technology
 - Not without a tremendous improvement in the memory performance
 - Energy is not free. Energy-to-Solution metric will become more and more important with respect to Time-to-Solution
- Do we need that much power to make Science ?