
Energy-driven algorithms
… or energy-aware computing...

Vincent Keller
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Facts (2005)

 Top 5 machines in the TOP500: 1-10 [MW]
 Power consumption for Data centers worldwide: 

17,4 [GW]
 1 mid-size nuclear power plant: 1 [GW]
 Power consumption needed by Data Centers 

doubles every 5 years
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190 [GW] ?

~ 180 nuclear power plants ?
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Energy in Data Centers
Where is it used ?

(Jonathan G. Koomey, 2012)
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Goal/Dream/Ads: Exascale (1018) in 2020

How ? (and why ?)
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What vendors say

We are here 
at the first place !
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What vendors say 
(Al Gore version)

We “should” be here 
at the first place !
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The vendors base all their forecasts (and  
R&D) on the performance of HPL (High 

Performance LINPACK) for the TOP500 and 
GREEN500 lists

HPL is a highly optimized application's kernel 

HPL is purely CPU-bound: its performance 
(R

max
) is very close to the CPU peak 

performance
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Processor evolution (R
max

) 
The Intel example
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OK, the CPU performance follows the Moore's 
law for HPL.

What about the memory ?
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Nice correlated data, isn't it ? 

No ! CPU performance grows exponentially 
while memory linearly.

So ... are our applications CPU 
or memory access dominated ?
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Ax = b
 Many simulation codes can be “summarized” to 

the resolution of Ax = b. A is (probably) sparse 
and dim(x) « large enough »

 Let me define V
a
, the “vectorization ratio”: the 

number of operations that can be performed by 
the CPU per memory access (LOAD or 
STORE)

 If V
a
 = 1 , each operand must be loaded from 

memory. 
 This is the case for Ax = b
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Consequence

 If V
a
 = 1 (or close), the application is purely 

memory bounded.
 Memory bandwidth and latency are the 

bottleneck
 CPU performance is not an issue
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Comparison HPL and
a memory-bound application
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Energy speaking...

 3% of computational efficiency means:
 3% of the CPU is used for what it is built for
 97% of the CPU is not used (but the CPU does not 

stop)
 97 % of the energy brought to the CPU is used 

to heat the air

And we want to go for Exascale ?

 3% of computational efficiency means:
 3% of the CPU is used for what it is built for
 97% of the CPU is not used (but the CPU does not 

stop)
 97 % of the energy brought to the CPU is used 

to heat the air (or the water) around the data 
center
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OK, that is for a “pure” V
a
=1 application.

What about REAL applications Energy 
footprint ?
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Test case

 Three applications
 MiniFE (FEM)
 CPMD (Car-Parinello)
 GEAR (n-body)

 Three 2012 CPU models:
 CPU1 is “low power”
 CPU2 is “middle class”
 CPU3 is “high performance”

 All three CPUs have the same instruction set 
and the same memory banks connected.
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Power consumption is measured during 
execution...
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An example: SNL MiniFE

MiniFE: “best approximation to an unstructured implicit finite element or finite volume application, but in 8000 lines or fewer.”
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Another example: n-body GEAR
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A last example: Car-Parinello CPMD
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Energy To Solution

 E = P·t (        )
 Energy-driven computing → choice of the most 

efficient machine for a given algorithm
   TTS (Time-to-Solution) can differ. We strictly deal 

  
with Energy

E=∫ p (t ) dt
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Energy-to-solution (in KJ)
Application Number of 

cores
CPU1 CPU2 CPU3

MiniFE 2 cores 54.01 48.225 48.823

4 cores 29.571 27.695 28.672

8 cores 23.072 22.206 23.087

16 cores 18.547 19.425 21.761

GEAR 1 core 1223.269 1010.254 982.307

2 cores 734.507 644.846 636.732

4 cores 420.228 382.701 385.091

8 cores 258.579 246.42 254.397

16 cores 224.916 231.221 252.747

CPMD 4 cores 666.9 658.952 698.769

8 cores 407.248 433.001 477.28

16 cores 350.794 364.845 467.274
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So HAL, what is your conclusion?

“I am putting myself to the fullest possible use, 
which is all I think that any conscious entity can 

ever hope to do. “
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Conclusion

 Choose the best suited machine. 

– Ex: For a memory-bound application (V
a
=1), a 

vector architecture is more suited  
 Change the algorithm if your problem can be 

solved differently
 Help CPU founders to produce suited chips 

with a balanced FSB/Core frequency: CO-
DESIGN
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Conclusion

  Exascale in 2018 : probably possible.
  But (if we want to use it) :

 Not with the current technology
 Not without a tremendous improvement in the 

memory performance
 Energy is not free. Energy-to-Solution metric 

will become more and more important with 
respect to Time-to-Solution

  Do we need that much power to make 
Science ?
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