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Motivation

N–S

FSI Multiscale model

Malossi, Blanco, Deparis, Quarteroni. Algorithms for the partitioned solution of weakly-coupled fluid models.
2010. Submitted.

Crosetto, Deparis, Fourestey, Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemo-
dynamics. SIAM J. Sci. Comput., 2011.
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Outline

Metrics for parallel preconditioners

Approximate preconditioners for the Navier–Stokes equations

Experimental results

Weak and strong scalability analysis for assembling the
preconditioner and solving the problem
Viscosity impact on the performances
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Mathematical model

The Navier–Stokes equations for an incompressible viscous flow
read:

∂
∂t u + u · ∇u− ν∆u +∇p = f in Ω× (0,T ]

∇ · u = 0 in Ω× (0,T ]
u = ϕ on ΓD × (0,T ]

ν ∂u
∂n − pn = 0 on ΓN × (0,T ]

u = u0 at t = 0

where ΓD and ΓN are the Dirichlet and Neumann parts of the
boundary respectively, u is the fluid velocity, p the pressure, ν the
kinematic viscosity of the fluid, and f the external forces.
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Mathematical model
Discretization

E.g. with semi-implicit Euler scheme:

un+1−un

∆t + un · ∇un+1 − ν∆un+1 +∇pn+1 = fn+1 in Ω
∇ · un+1 = 0 in Ω

un+1 = ϕ on ΓD

ν ∂un+1

∂n − pn+1n = 0 on ΓN

FE discretization using P2 − P1 finite elements on
unstructured grids:(

F (Un) BT

B 0

) (
Un+1

Pn+1

)
=

(
Gn+1(Un)

0

)
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Metrics for parallel preconditioners

First perspective: To solve large scale problems as efficiently as
possible by parallel algorithms.

Definition (Strong scalability)

Let T1 and TP be the computational time to run an application
with fixed amount of computational work using one and P
processes respectively. An application is said to be strongly
scalable if

TP =
T1

P
.

In particular, the preconditioned iterations of the numerical solver
should be strongly scalable.
⇒ The preconditioner plays a key role in the scalability.
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Metrics for parallel preconditioners

Second perspective: solving bigger and bigger problems while
keeping the computational time constant, provided that suitable
resources are available.

Definition (Weak scalability)

Let denote the workload of a given problem W1 and W2 be the
workload to solve a given problem using P1 and P2 processes
respectively such that

W1

P1
=

W2

P2
.

An application is said to be weakly scalable if for any couple
(W1,P1) and (W2,P2) the computational time of the application
is the same.
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Metrics for parallel preconditioners

Definition (Preconditioner scalability)

A preconditioner P of A is said to be scalable if the rate of convergence
of the iterative method used to solve the preconditioned system

AP−1y = b, x = P−1y.

does not deteriorate when the number of processes grows.

Definition (Preconditioner optimality)

A preconditioner is said to be optimal for a given problem A ∈ RN×N if
for

1 the number of preconditioned iterations is bounded with respect to
the dimension N of A;

2 the total computational costs to build and use the preconditioner
increase linearly wrt the dimension N of A.
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Metrics for parallel preconditioners

Definition (Preconditioner robustness)

A preconditioner is said to be robust if the convergence rate of the
iterative method does not depend on the physical parameters (e.g.
viscosity) that characterize the PDE.

This property ensures that the preconditioner handles a wide range
of Reynolds numbers; for medical simulations the Navier–Stokes
equations have to be solved for a wide range of Reynolds from
<e = 1 to <e = 4000.

David N. Ku. Blood flow in arteries. Annu. Rev. Fluid Mech., 1997.
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Designing a Navier–Stokes preconditioner for HPC

Dream list:

1 The algorithms involved to build and apply the preconditioner
must be weakly and strongly scalable.

2 The preconditioner should be optimal.

3 The preconditioner should be scalable.

4 The preconditioner should be robust with respect to the
viscosity ν.
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Designing a Navier–Stokes preconditioner for HPC

The matrix of the linearized N–S system after discretization can be
factorized as, e.g.

A =

(
F BT

B 0

)
=

(
I 0

BF−1 I

) (
F BT

0 −S

)
where S = BF−1BT is the Schur complement.

Idea: Exploit the block structure of the problem matrix:
We consider the following factor as right preconditioner

P =

(
F BT

0 −S

)
One can prove that PGMRES converges in at most 2 iterations!

Murphy, Golub, Wathen. A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput., 2000.

Quarteroni, Saleri, Veneziani. Factorization methods for the numerical approximation of Navier–Stokes equations.
Comput. Methods Appl. Mech. Engrg., 2000.

Elman, Howle, Shadid, Shuttleworth, Tuminaro. A taxonomy and comparison of parallel block multi-level pre-
conditioners for the incompressible Navier–Stokes equations. J. Comput. Phys., 227(3):1790–1808, 2008.
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Classical preconditioners for N–S

SIMPLE

P−1
SIMPLE =

„
D−1 0

0 I

«„
I −BT

0 I

«„
D 0

0 1
α

I

«„
I 0

0 −S̃−1

«„
I 0
−B I

«„
F−1 0

0 I

«
,

where α ∈ (0, 1] is a damping parameter and S̃ = BD−1BT .

Patankar, Spalding. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic
flows. International J. on Heat and Mass Transfer, 15:1787–1806, 1972.

Yosida

P−1
Yosida =

„
F−1 0

0 I

«„
I −BT

0 I

«„
F 0
0 I

«„
I 0

0 −S−1

«„
I 0
−B I

«„
F−1 0

0 I

«
,

with S = ∆tBM−1
u BT .

Alfio Quarteroni, Fausto Saleri, and Alessandro Veneziani. Analysis of the Yosida method for the incompressible
Navier–Stokes equations. J. Math. Pures Appl., 1999.

PCD

P−1
PCD =

„
F−1 0

0 I

«„
I −BT

0 I

«„
I 0

0 −M−1
p

«„
I 0
0 Fp

«„
I 0

0 A−1
p

«
.

Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized Navier-Stokes equations for incompress-
ible flow. J. Comput. Appl. Math., 2001.

Kay, Loghin, Wathen. A preconditioner for the steady-state Navier–Stokes equations. SIAM J. Sci. Comput.,
2002.
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Approximate preconditioners for N–S

Approximate SIMPLE (aSIMPLE)

P−1
aSIMPLE =

„
D−1 0

0 I

«„
I −BT

0 I

«„
D 0

0 1
α

I

« 
I 0

0 −ˆ̃S−1

!„
I 0
−B I

«„
F̂−1 0

0 I

«
,

where α ∈ (0, 1] is a damping parameter and S̃ = BD−1BT .

Approximate Yosida (aYosida)

P−1
aYosida =

„
F̂−1 0

0 I

«„
I −BT

0 I

«„
F 0
0 I

«„
I 0

0 −Ŝ−1

«„
I 0
−B I

«„
F̂−1 0

0 I

«
,

with S = ∆tBM−1
u,`BT .

Approximate PCD (aPCD)

P−1
aPCD =

„
F̂−1 0

0 I

«„
I −BT

0 I

«„
I 0

0 −M̂−1
p

«„
I 0
0 Fp

«„
I 0

0 Â−1
p

«
.

where ˆ denotes the use of a preconditioner to approximate the
inverse
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Inverses approximation
Details on the preconditioners

The algebraic additive Schwarz (AS) preconditioner used has
2 layers of overlap, the subdomain problems are solved with
exact factorization (with the Amesos KLU method in the
Trilinos library) [Sala, Heroux, Sandia Report, 2005].

The multilevel preconditioners and the 1-level additive
Schwarz are provided by Ifpack and ML from Trilinos.

The coarsening for the multilevels preconditioners is obtained
via aggregations using METIS/ParMETIS.

Quarteroni, Valli. Domain decomposition methods for partial differential equations. Numerical Mathematics and
Scientific Computation. The Clarendon Press Oxford University Press, New York, 1999.
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Inverses approximation
Details on the preconditioners

F̂−1 and (BM−1
u,` BT )−1 are replaced with a 2-level Schwarz

preconditioner; the first level is applied without overlap with a
coarse grid correction. The subdomain problems are solved
using exact factorization.

Â−1
p and (BD−1BT )−1 are replaced using a V-cycle AMG

with 2 sweeps of symmetric Gauss-Seidel as smoother
(presmoothing only), exact factorization for the coarsest level.
The AMG is implemented in the ML package in Trilinos
[Sala, TOMS, 2006], [Gee, Kuttler, Wall, IJNME, 2010].

M̂−1
p is replaced by the inverse of the diagonal lumped mass

matrix.
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Numerical results
Software implementation

Finite elements library
written in C++ (80’000
lines)

LGPL license

Used in the Mathcard
European project
(http://mathcard.eu), and
the HP2C project.

LifeV relies on several external libraries:

ParMetis/Metis for parallel mesh partitioning;

Trilinos (10.8) for matrix and vector parallel distribution,
for parallel solvers, and for parallel preconditioners;

Boost, SuiteSparse (UMFPACK), HDF5.

17/34



Introduction Metrics for parallel preconditioners Preconditioners for N–S Numerical results Conclusion

Numerical results
Preconditioners in LifeV

Preconditioner

PreconditionerComposition* PreconditionerMLPreconditionerIfpack

Teko

PreconditionerTeko*

PreconditionerLSC*

Ifpack ML

PreconditionerYosida*
PreconditionerSIMPLE*
PreconditionerPCD*
PreconditionerRDF*

A A

A

Figure: Overview of the preconditioners in LifeV

A = Abstract classes

= Trilinos packages

* Developed in the context of the HP2C project
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Numerical results
Preconditioners in LifeV

The PreconditionerComposition class exploits the block
structure of the FE matrix A to create preconditioners.

A =

(
F BT

B 0

)

The class is able to

manage composition of operators obtained by factorizing the
matrix A.

replace the inverses of operators by preconditioners (e.g.
multigrid preconditioners, additive Schwarz preconditioner).
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Numerical results
Simulation protocol

Linear problem solved at each timestep with preconditioned
GMRES provided by the Belos package in Trilinos;

Stopping criteria based on the residual scaled by the right
hand side:

‖b−Axk‖2 ≤ 10−6‖b‖2.
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Numerical results

The simulations were run on the Monte Rosa Cray XE6 at the
CSCS, Lugano, Switzerland.

Number of nodes 1496
Number of processors per node 2x16-core AMD Interlagos
Processors frequency 2.1 GHz
Processors shared memory 32 GB DDR3
Peak performance 402 Teraflop/s.
Network Gemini 3D torus
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Blood vessel benchmark
Weak scalability of the preconditioners

Number of DoFs L/4 L/2 L

Coarse 512,747 1,079,563 2,363,158
Fine 2,000,361 4,256,516 9,208,310
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Blood vessel benchmark
Weak scalability of the preconditioners

(a) Coarse mesh (max. 256 CPU) (b) Fine mesh (max. 512 CPU)

Figure: CPU time to assemble the preconditioner
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Blood vessel benchmark
Weak scalability of the preconditioners

(a) Coarse mesh (max. 256 CPU) (b) Fine mesh (max. 512 CPU)

Figure: CPU time to solve the linear system
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Blood vessel benchmark
Weak scalability of the preconditioners

(a) Coarse mesh (max. 256 CPU) (b) Fine mesh (max. 512 CPU)

Figure: GMRES iterations
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Blood-flow in rigid geometry

All our preconditioners are tested and tuned on a benchmark
relevant for medical applications (Re = 400).

Mesh Velocity DoFs Pressure DoFs hmin hmax hav

Coarse 597,093 27,242 0.015 0.059 0.035
Medium 4,557,963 199,031 0.005 0.051 0.018
Fine 35,604,675 1,519,321 0.0026 0.0277 0.0097

Baek, Jayaraman, Richardson, Karniadakis. Flow instability and wall shear stress variation in intracranial
aneurysms.J R Soc Interface, 2010.
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Blood-flow in rigid geometry

u = 0 on Γwall ,
u = ϕfluxn on Γin,

ν
∂u

∂n
− pn = 0 on Γout ,
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Blood-flow in rigid geometry
Preconditioner build

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

The curves are superlinear due to the computation of the local
LU factorizations.
When the assembly time goes below a given threshold, the
communication time overcomes the computation time for
aPCD, aSIMPLE, and aYosida.
The AS preconditioner is clearly longer to build.
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Blood-flow in rigid geometry
GMRES iterations

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

If the fine mesh is fine enough, the aPCD, aYosida, and
aSIMPLE are scalable (flat curves).
AS requires a further mesh refinement to become scalable.
GMRES converges slower when the AS preconditioner is used.
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Blood-flow in rigid geometry
Time to solve the linear system

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

For the coarse mesh, the AS prec. is not strongly scalable.
Under ∼ 1 s. the communication time overcomes the
computation time for aPCD, aSIMPLE, and aYosida (coarse
mesh)
For the medium and fine meshes, the preconditioners are
strongly scalable.
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Blood-flow in rigid geometry
GMRES convergence

Coarse Medium Fine
16 vs 1024 CPU 512 vs 1024 CPU 1024 vs 8192 CPU

For aPCD, aYosida, and aSIMPLE, GMRES converges very
quickly for all meshes.
In the case of the AS prec., we observe that using a finer
mesh is crucial to obtain a fast convergence rate (typically the
size of the subdomains contains more unkowns).
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Blood-flow in rigid geometry
Sensitivity to the fluid viscosity

AS Coarse Medium Fine

aPCD Coarse Medium Fine
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Blood-flow in rigid geometry
Sensitivity to the fluid viscosity

aYosida Coarse Medium Fine

aSIMPLE Coarse Medium Fine

33/34



Introduction Metrics for parallel preconditioners Preconditioners for N–S Numerical results Conclusion

Conclusion and ongoing work

We developed preconditioners for solving Hemodynamic
simulations.

We tested the weak and strong scalability of our algorithms.

The proposed preconditioners are scalable (i.e. number of
iterations remains constant wrt the number of processors).

Ongoing work

Integration of the aPCD, aYosida, and aSIMPLE into FSI
preconditioners.

Test the benefits of the preconditioners in a multiscale
simulations.
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