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Abstract

The purpose of this report is to document a basic installation of the Anasazi eigensolver package and
provide a brief discussion on the numerical solution of some graph eigenvalue problems.
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1 Introduction

The purpose of this report is to document a basic installation of the Anasazi [4] eigensolver package and
provide a brief discussion on the numerical solution of some graph eigenvalue problems.

Anasazi is a Trilinos [8] package for the numerical solution of the large-scale eigenvalue problem.1

Anasazi provides a generic interface to a collection of eigensolver algorithms. Matrices and vectors used
in computation are treated as opaque objects; only elementary operations on matrices and vectors need
to be provided through the interface. After providing the interface implementation, a user may access
any of Anasazi’s suite of algorithms, including the implementation [9] of the Locally-Optimal Block Pre-
conditioned Conjugate Gradient [10], a Block Krylov-Schur [12], a Block Davidson [3], and an Implicit
Riemannian Trust-Region [2] methods, respectively.

In this report, we use Trilinos’ Epetra [1] implementation of the Anasazi interface to matrices and vec-
tors. Epetra provides the basic building blocks needed for serial and parallel linear algebra. The Epetra Map
class describes the distribution of rows, columns, and vector entries to processes. This class supports both
1D (row-based or column-based) and 2D (nonzero-based) matrix distributions, and plays a key role in en-
abling the 2D distributions [6] useful for large graphs with skewed degree distributions. The Epetra Import
and Epetra Export functions perform communication needed to share data among processes. Sparse ma-
trices can be stored by Epetra CrsMatrix; users may use their own matrix layouts through the virtual Epe-
tra RowMatrix class. Epetra features a multi-vector class Epetra MultiVector that is, in essence, a collection
of vectors; this class enables block-based linear and eigensolvers to be efficiently implemented in Trilinos.
An extension of Epetra called Epetra64 is also available, which enables Epetra classes to be used for graphs
with more than two billion global vertices or edges.

Other packages in Trilinos that have proven useful in our work are the Belos [5] and IFPACK [11]
packages. Belos is a block-based linear solver package with a matrix/vector abstraction similar to Anasazi’s;
we have exploited Belos’ block-based solvers to compute commute distances between many pairs of vertices
simultaneously. IFPACK is a collection of preconditioners, including Incomplete Cholesky, Symmetric
Gauss-Seidel, ILU, and Jacobi preconditioners. A Maximum-weight Spanning Forest (MSF) preconditioner
is also implemented in IFPACK; see [7] for details.

1See http://trilinos.sandia.gov/packages/anasazi/ and http://trilinos.org, respectively, for online information
on Anasazi and Trilinos.
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2 Installing Anasazi

The following are directions for building a minimal installation of Anasazi for serial (non-MPI) execution
with debug information. These directions were completed on a Dell workstation running Red Hat Enterprise
Linux 6. We assume that the Trilinos source code has been downloaded and extracted from either http://
trilinos.sandia.gov/download or http://trilinos.org. These urls provide the most recent version
of Trilinos. The following instructions used release tarfile trilinos-11.8.1-Source.tar.gz. 2

We assume that the environment variable TRILINOS PATH contains the directory path for the Trilinos source
code. We also need a “build” directory, defined by the environment variable TRILINOS BUILD, where the in-
stance of Trilinos in debug serial mode will be created; this directory should be distinct from TRILINOS PATH.

Step 1. Create a file called do-configure with the lines:

1 cmake \
2 −D CMAKE INSTALL PREFIX : FILEPATH=$TRILINOS BUILD \
3 −D Trilinos ENABLE ALL OPTIONAL PACKAGES :BOOL=OFF \
4 −D Tri l inos ENABLE Anasaz i :BOOL=ON \
5 −D Tr i l inos ENABLE Epe t ra :BOOL=ON \
6 −D Tr i l i nos ENABLE Epe t r aEx t :BOOL=ON \
7 −D T r i l i n o s E N A B L E T r i u t i l s :BOOL=ON \
8 −D Tri l inos ENABLE Belos :BOOL=ON \
9 −D Tr i l i nos ENABLE I fpack :BOOL=ON \

10 −D Trilinos ENABLE TESTS :BOOL=ON \
11 −D TPL BLAS LIBRARIES =/ u s r / l i b 6 4 / l i b b l a s . so . 3 \
12 −D TPL LAPACK LIBRARIES =/ u s r / l i b 6 4 / l i b l a p a c k . so . 3 \
13 −D CMAKE VERBOSE MAKEFILE :BOOL=ON \
14 −D Trilinos ENABLE DEBUG :BOOL=ON \
15 −D CMAKE BUILD TYPE : STRING=DEBUG \
16 −D Trilinos ENABLE EXPLICIT INSTANTIATION :BOOL=ON \
17 $TRILINOS PATH

The second line specifies the installation directory for all the header files and libraries; see Step 4 below.
The third line allows us to build and install only the packages we request. The fourth and fifth lines build
Anasazi and Epetra, respectively. The sixth and seventh lines build extension libraries for Epetra so that
Matrix Market files can be read. Lines 8 and 9 build the Trilinos libraries for block Krylov methods and
algebraic preconditioners, respectively. Lines 10 and 11 locate the BLAS and LAPACK libraries. Often,
these lines are not needed because CMake can determine the libraries’ location. However, if the BLAS and
LAPACK libraries are not automatically located, one can specify the appropriate locations as shown in this
example.

A minimal build would enable only Anasazi (line 4). Two libraries would be created: libanasazi.a
and libteuchos.a. The latter library provides important software infrastructure needed by Anasazi, in-
cluding BLAS/LAPACK wrappers, smart pointers, and parameter lists. However, to use Anasazi (and
run an example), implementations of the AnasaziMultiVecTraits and AnasaziOperatorTraits adaptor
classes are needed. In this work, we use the implementation, or template specialization, available in files
AnasaziEpetraAdapter.cpp and AnasaziEpetraAdapter.hpp.

Step 2. Execute the command ./do-configure. This script creates the files needed to build Trilinos.

Step 3. Execute the command make to create the executables and libraries.
2A .tar.bz2 download file and a public read-only repository are also available.
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Step 4. Execute the command make install. This command places the libraries and header files in
the two directories $TRILINOS BUILD/lib and $TRILINOS BUILD/include, respectively, as specified in
the do-configure file (see Step 1 above).

Step 5. Execute the CMake command ctest. This command runs tests of the libraries created. The tail
of the output written to the screen is displayed in the box below.

. . . . . Ou tpu t n o t d i s p l a y e d . . . . . .
195 /198 T e s t # 195: A n a s a z i I R T R c o m p l e x l a p t e s t 6 . . . . . . . . . . . . Passed 0 . 0 2 s e c

S t a r t 196 : A n a s a z i I R T R c o m p l e x l a p t e s t 7
196/198 T e s t # 196: A n a s a z i I R T R c o m p l e x l a p t e s t 7 . . . . . . . . . . . . Passed 0 . 0 2 s e c

S t a r t 197 : A n a s a z i I R T R c o m p l e x t e s t 0
197/198 T e s t # 197: A n a s a z i I R T R c o m p l e x t e s t 0 . . . . . . . . . . . . . . . . Passed 0 . 5 3 s e c

S t a r t 198 : A n a s a z i I R T R c o m p l e x t e s t 1
198/198 T e s t # 198: A n a s a z i I R T R c o m p l e x t e s t 1 . . . . . . . . . . . . . . . . Passed 0 . 4 9 s e c

100% t e s t s passed , 0 t e s t s f a i l e d o u t o f 198

Labe l Time Summary :
Anasaz i = 16 .76 s e c
Be los = 33 .07 s e c
E p e t r a = 10 .33 s e c
E p e t r a E x t = 3 . 5 7 s e c
I f p a c k = 0 . 6 9 s e c
T r i u t i l s = 0 . 1 0 s e c

T o t a l T e s t t ime ( r e a l ) = 64 .96 s e c

This summary indicates that all the libraries were properly created and all the tests completed successfully.

9



3 Directory structure

Recall that the environment variables TRILINOS PATH and TRILINOS BUILD contain the directory paths
for the Trilinos source code and installation directory, respectively. The Anasazi source is located in the
directory $TRILINOS PATH/packages/anasazi and contains the subdirectories

cmake doc e p e t r a s r c t e s t t e s t m a t r i c e s t h y r a t p e t r a

The directory $TRILINOS BUILD/packages/anasazi has a similar directory structure containing the exe-
cutables and libraries created during Step 3 and contains the subdirectories

CMakef i l e s e p e t r a s r c t e s t

In particular, the subdirectory $TRILINOS BUILD/packages/anasazi/epetra contains the subdirectories

CMakef i l e s example s r c t e s t u t i l

and the subdirectory $TRILINOS BUILD/packages/anasazi/epetra/example contains the subdirectories

BlockDavidson BlockKry lovSchur CMakeFiles G e n e r a l i z e d D a v i d s o n LOBPCG MVOPTester

The subdirectories BlockDavidson, BlockKrylovSchur, and LOBPCG contain the executables associated
with the C++ examples located in $TRILINOS PATH/packages/anasazi/epetra/example.
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4 Running an Anasazi LOBPCG example

We begin by creating a directory (which is not a subdirectory $TRILINOS PATH) and placing a copy of
the file $TRILINOS PATH/packages/anasazi/epetra/example/LOBPCG/LOBPCGEpetraExSimple.cpp.
We consider this example in detail and display excerpts from the file below.

1 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
2 / / Get t h e s o r t i n g s t r i n g from t h e command l i n e
3 s t d : : s t r i n g which ( ”SM” ) ;
4 Teuchos : : CommandLineProcessor cmdp ( f a l s e , t r u e ) ;
5 cmdp . s e t O p t i o n ( ” s o r t ” ,&which , ” T a r g e t t e d e i g e n v a l u e s (SM or LM) . ” ) ;
6 / / Code t o c r e a t e E p e t r a m a t r i x A i s n o t shown h e r e ; s e e t h e Appendix .
7 / /
8 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 / / C a l l t h e LOBPCG s o l v e r manager

10 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 / / V a r i a b l e s used f o r t h e LOBPCG Method
12 c o n s t i n t nev = 1 0 ;
13 c o n s t i n t b l o c k S i z e = 5 ;
14 c o n s t i n t m a x I t e r s = 500 ;
15 c o n s t d ou b l e t o l = 1 . 0 e−8;
16 t y p e d e f E p e t r a M u l t i V e c t o r MV;
17 t y p e d e f E p e t r a O p e r a t o r OP ;
18 t y p e d e f M u l t i V e c T r a i t s<double , E p e t r a M u l t i V e c t o r> MVT;
19 / / C r e a t e an E p e t r a M u l t i V e c t o r f o r an i n i t i a l v e c t o r t o s t a r t t h e s o l v e r .
20 / / Note : Th i s needs t o have t h e same number o f columns as t h e b l o c k s i z e .
21 Teuchos : : RCP<E p e t r a M u l t i V e c t o r> i v e c = Teuchos : : r c p ( new E p e t r a M u l t i V e c t o r ( Map , b l o c k S i z e ) ) ;
22 i vec−>Random ( ) ;
23 / / C r e a t e t h e e i g e n p r o b l e m .
24 Teuchos : : RCP<Bas icE igenprob lem<double , MV, OP> > MyProblem = Teuchos : : r c p ( new

Bas icE igenprob lem<double , MV, OP>(A, i v e c ) ) ;
25 / / In fo rm t h e e i g e n p r o b l e m t h a t t h e o p e r a t o r A i s symmet r i c
26 MyProblem−>s e t H e r m i t i a n ( t r u e ) ;
27 / / S e t t h e number o f e i g e n v a l u e s r e q u e s t e d
28 MyProblem−>setNEV ( nev ) ;
29 / / In fo rm t h e e i g e n p r o b l e m t h a t you a r e f i n i s h i n g p a s s i n g i t i n f o r m a t i o n
30 boo l b o o l r e t = MyProblem−>s e t P r o b l e m ( ) ;
31 i f ( b o o l r e t != t r u e ) {
32 p r i n t e r . p r i n t ( E r r o r s , ” Anasaz i : : B a s i c E i g e n p r o b l e m : : s e t P r o b l e m ( ) r e t u r n e d an e r r o r .\ n ” ) ;
33 r e t u r n −1;
34 }
35 / / C r e a t e p a r a m e t e r l i s t t o p a s s i n t o t h e s o l v e r manager
36 Teuchos : : P a r a m e t e r L i s t MyPL ;
37 MyPL . s e t ( ” Which ” , which ) ;
38 MyPL . s e t ( ” Block S i z e ” , b l o c k S i z e ) ;
39 MyPL . s e t ( ”Maximum I t e r a t i o n s ” , m a x I t e r s ) ;
40 MyPL . s e t ( ” Convergence T o l e r a n c e ” , t o l ) ;
41 / / C r e a t e t h e s o l v e r manager
42 SimpleLOBPCGSolMgr<double , MV, OP> MySolverMan ( MyProblem , MyPL) ;
43 / / So lve t h e problem
44 ReturnType r e t u r n C o d e = MySolverMan . s o l v e ( ) ;
45 / / Get t h e e i g e n v a l u e s and e i g e n v e c t o r s from t h e e i g e n p r o b l e m
46 E i g e n s o l u t i o n<double ,MV> s o l = MyProblem−>g e t S o l u t i o n ( ) ;
47 s t d : : v e c t o r<Value<double> > e v a l s = s o l . E v a l s ;
48 Teuchos : : RCP<MV> e v e c s = s o l . Evecs ;

LOBPCGEpetraExSimple.cpp is organized into the following four parts:

1. Initialize Anasazi’s infrastructure (output manager, command line arguments);

2. Assemble the sparse matrix using Epetra;

3. Set input parameters and call the LOBPCG solver; and
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4. Output results.

In this example, Line 42 creates an instance MySolverMan of the class SimpleLOBPCGSolMgr. The con-
structor is initialized with an instance MyProblem of the class BasicEigenproblem, that was initialized
with the Epetra matrix A and starting vector ivec. Line 44 calls the LOBPCG solver via the command
MySolverMan.solve(). Line 46 extracts the approximate eigenvalues and eigenvectors via the command
MyProblem->getSolution()

Algorithm behavior is determined by several input parameters.

• which, line 3, specifies which eigenvalues are to be computed and must be a std::string equal
to ‘‘SM’’, ‘‘LM’’, ‘‘SR’’, ‘‘LR’’ representing the eigenvalues with the Smallest Magnitude,
Largest Magnitude, Smallest Real value and Largest Real value, respectively.

• nev, line 12, represents the number of eigenvalues of interest and is a nonnegative integer no larger
than the size of the matrix.

• blockSize, line 13, represents the number of vectors in a block and is a nonnegative integer no larger
than the size of the matrix.

• maxIters, line 14, limits the maximum number of iterations of the algorithm and is a nonnegative
integer.

• tol, line 15, is the termination criterion that each of the approximate eigenpairs must satisfy and is
a floating point number no smaller than machine precision (roughly 10−16 in IEEE double precision
arithmetic).

The basic organization of LOBPCGEpetraExSimple.cpp is used in all of the LOBPCG examples. Except for
differences in the input parameters, BlockDavidson and BlockKrylovSchur follow a similar structure.

An example Makefile for building applications using Anasazi is shown below.

#
# I mp or t a f i l e c r e a t e d by t h e T r i l i n o s b u i l d sys tem
# c o n t a i n i n g u s e f u l i n f o r m a t i o n t o g e n e r a t e e x e c u t a b l e s .
# F i r s t , s e t t h e p a t h t o t h e i n s t a l l d i r e c t o r y , and second , i m p o r t t h e f i l e .
#
i n c l u d e $TRILINOS BUILD / i n c l u d e / M a k e f i l e . e x p o r t . T r i l i n o s
#
# Copy
# $ ( TRILINOS PATH ) / p a c k a g e s / a n a s a z i / e p e t r a / example /LOBPCG/ LOBPCGEpetraExSimple . cpp
# i n t o t h e c u r r e n t working d i r e c t o r y .
#
LOBPCGEpetraExSimple . exe : LOBPCGEpetraExSimple . cpp

$ ( Trilinos CXX COMPILER ) $ ( Trilinos CXX COMPILER FLAGS ) \
LOBPCGEpetraExSimple . cpp −o LOBPCGEpetraExSimple . exe \
$ ( Tril inos INCLUDE DIRS ) $ ( Trilinos TPL INCLUDE DIRS ) \
$ ( Tril inos LIBRARY DIRS ) $ ( Tr i l inos LIBRARIES ) \
$ ( Tri l inos TPL LIBRARIES ) $ ( Trilinos EXTRA LD FLAGS )

#
c l e a n :

rm −f LOBPCGEpetraExSimple . exe LOBPCGEpetraExSimple . o

The command make ./LOBPCGEpetraExSimple.exe creates the executable LOBPCGEpetraExSimple.exe.
Executing the command ./LOBPCGEpetraExSimple.exe results in the following output:
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S o l v e r manager r e t u r n e d conve rged .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
E i g e n v a l u e D i r e c t R e s i d u a l

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 .7376 4 .04035 e−11
49 .3345 1 .19465 e−10
49 .3345 3 .33375 e−11
78 .9314 4 .09916 e−10
98 .6308 5 .23853 e−10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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5 Three graph problems of interest

Let A be the adjacency matrix for a simple, undirected, connected graph with n vertices; let D be a diagonal
matrix containing the degrees of the vertices for the graph A. These assumptions are only to simplify our
presentation. Anasazi can also be used on nonsimple, directed, disconnected graphs; see the section on
Anasazi usage and graph eigenvalue problems.

1. Find the nev smallest magnitude (which="SM") approximate eigenvalues λ and eigenvectors x of the
normalized graph Laplacian matrix eigenvalue problem:

Lx :=
(
I−D−1/2AD−1/2)x = xλ , A = AT , 0≤ λ ≤ 2.

2. Find the nev smallest magnitude (which="SM") approximate eigenvalues ν and eigenvectors y of the
combinatorial graph Laplacian matrix eigenvalue problem:

Lcy :=
(
D−A

)
y = yν , A = AT , 0≤ ν ≤ 2n.

3. Find the nev largest magnitude (which="LM") approximate eigenvalues η and eigenvectors z of the
matrix eigenvalue problem

Az = zη , A = AT , −n≤ η ≤ n

14



Table 1. Primary parameters

BlockDavidson BlockKrylovSchur LOBPCG Description
which x x x Portion of the eigenvalues
tol x x x Residual tolerance
nev x x x Eigenpair approximations requested
blockSize x x x Number of vectors in a block
numBlocks x x Number of blocks
maxRestarts x x Max number of restarts
maxIters x Max number of iterations

6 Input parameters

We now provide some guidance on the influence of the primary parameters on the performance of the
Anasazi eigensolvers BlockDavidson, BlockKrylovSchur, and LOBPCG. Table 1 lists the primary input
parameters for BlockDavidson, BlockKrylovSchur and LOBPCG.

Let N be a preconditioner for T , i.e., N−1T ≈ I. Here T represents the normalized graph Laplacian
I−D−1/2AD−1/2, combinatorial graph Laplacian D−A, or the adjacency matrix A.

1. An approximate eigenvalue θ and approximate eigenvector u for the matrix T is accepted when

‖uθ −Tu‖2 ≤ θτ, ‖u‖2 = 1, θ 6= 0,

for the residual tolerance τ and ‖ · ‖2 is the Euclidean norm. This is an approximation to a relative
residual error and is not defined when θ = 0. The above test is invariant under a (nonzero) scaling of
T , i.e. αT , but is not invariant under a shift of T because

‖u(θ +α)−
(
T +αI)u‖2 ≤ (θ +α)τ. (6.1)

Selecting an appropriate τ requires some care and invariably depends upon the underlying problem.

2. BlockKrylovSchur iteratively constructs blockSize vectors at a time, an orthogonal basis for the
block Krylov subspace

span{v,T v, · · · ,T numBlocks−1v︸ ︷︷ ︸
blockSize*numBlocks

},

where v is an initial vector consisting of blockSize vectors.

3. BlockDavidson iteratively constructs blockSize vectors at a time, an orthogonal basis for the sub-
space

span{r1,N−1r2, · · · ,N−numBlocks+1rnumBlocks︸ ︷︷ ︸
blockSize*numBlocks

},

where ri = uiθi−Tui consisting of blockSize vectors, is determined at iteration i.

4. BlockKrylovSchur and BlockDavidson are restarted a maximum of maxRestarts number of times.
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5. A “restart” is a scheme for extracting a subspace of smaller dimension from the subspace of dimension
blockSize*numBlocks. The reduced size subspace is then iteratively extended blockSize vectors
at a time until the subspace is of dimension blockSize*numBlocks again.

6. LOBPCG constructs an orthogonal basis for the subspace

span{ui−1,ui,N−1(
θiui−Tui

)︸ ︷︷ ︸
3*blockSize

}

where ui and ui−1 are the blockSize approximate eigenvectors corresponding to the which="SM"
approximate eigenvalues at iterations i and i− 1, respectively. The variable maxIters denotes the
maximum number of iterations.

7. The BlockDavidson and LOBPCG eigensolvers can directly use a preconditioner. BlockKrylovSchur
cannot directly use a preconditioner and instead requires a preconditioned iteration.

8. BlockKrylovSchur can also be used in shift-invert mode; e.g., T = (L+σ I)−1 where 0 < σ < λ1
and which="LM". The restriction on the shift σ enables a preconditioned conjugate gradient iteration
with the preconditioner N.

9. For the normalized and combinatorial graph Laplacian matrices, which="SM" is the same as which="SA"
(smallest algebraic) and which="SR" (smallest real part).

10. Anasazi eigensolvers BlockDavidson, BlockKrylovSchur, and LOBPCG can be used for all three
problems since these problems are symmetric eigenvalue problems when the graph is undirected.
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7 Anasazi usage and graph eigenvalue problems

Suppose the graph is connected, simple and undirected. The eigenvectors of the normalized L=D−1/2LcD−1/2

and combinatorial Lc graph Laplacian matrices coincide if and only if the matrices commute; e.g.,

D−1/2(D−A
)
D−1/2︸ ︷︷ ︸(D−A

)
=
(
D−A

)
D−1/2(D−A

)
D−1/2︸ ︷︷ ︸ .

This occurs only when the graph is regular and, then, our experience is that BlockKrylovSchur is an
excellent choice. When the graph is not regular, and has a skew degree distribution, our experience is as
follows:

• LOBPCG performs well for computing the smallest eigenvalues of the combinatorial graph Laplacian
D−A;

• BlockKrylovSchur performs well for computing the smallest eigenvalues of the normalized graph
Laplacian I−D−1/2AD−1/2 and the largest eigenvalues of both graph Laplacians;

• BlockDavidson was not competitive;

• Preliminary findings demonstrated that Implicit Riemannian Trust-Region IRTR available within Anasazi
was competitive with LOBPCG and BlockKrylovSchur.

The Anasazi eigensolvers can be used on disconnected and directed graphs. The complication with
disconnected graphs is that the number of connected components determines the dimension of the nullspace
for the graph Laplacian. In many applications, the graph consists of a number of connected components,
leading to a potentially large number of zero eigenvalues and corresponding eigenvectors. A good approach
is to invoke the eigensolver on each connected component. A directed graph leads to a nonsymmetric graph
Laplacian since the adjacency matrix A is no longer symmetric. Therefore, only BlockKrylovSchur may
be used.

Assume that the graph is connected. Then the normalized and combinatorial graph Laplacian matrices
both have a zero eigenvalue λ0 = ν0 = 0 with eigenvector D1/2c and c, respectively, where c ∈ span{e}
for the vector e of all ones. There are (at least) three ways to handle the nullspace vector. First, let the
eigensolver compute the approximation (which="SM" or "SA" or "SR"). Second, after an application of the
graph Laplacian matrix vector product to a vector, orthogonalize against the nullspace vector. Third, add a
multiple α of the identity matrix to the graph Laplacian. This last approach modifies the zero eigenvalue to
be the multiple and the eigenvector remains the same. However, the bound (6.1) explains that a positive α

modifies the termination criterion, so accuracy of the computed eigenvector approximation may be affected.

Our experience is that a Jacobi preconditioner works quite well on the combinatorial Laplacian corre-
sponding to a non-regular graph, and a symmetric Gauss-Seidel preconditioner works well for the normal-
ized graph Laplacian; see the preliminary findings of Deweese and Boman [7].

A good metric by which to compare different algorithms (and implementations) is the number of matrix-
vector products with L (or LC) and applications of the preconditioner N needed to achieve a prescribed level
of accuracy (as measured by the residual tolerance). In the final analysis, though, wall-clock time is the
most important consideration. There are two important sources of additional cost:

1. The cost of maintaining orthogonality of the basis vectors to machine precision. The number of
floating point operations is blockSize*numBlocks*n2 where n is the number of vertices of the graph.
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2. The cost of solving a dense eigenvalue problem of order blockSize*numBlocks. The number of
floating point operations is (blockSize*numBlocks)3.

As the problem size and/or the number of eigenvalues of interest increases, the relative cost of orthogonaliza-
tion and/or the dense eigenvalue problem increases. Constructing an orthogonal basis efficiently and stably
is critical to the success of an eigensolver; this is automatically accomplished by the Anasazi software.

Anasazi usage errors are of two types:

1. Simple errors that occur from improper input-parameter values.

2. Far more challenging errors involve the matrix T and preconditioner N, such as incorrect construction
of the matrix or preconditioner. Such errors may compile and execute, but may not represent the
system intended by the user. Unit testing of the matrix and preconditioner outside of Anasazi is
suggested.

Our recommendation is to first experiment with the various example programs provided with Anasazi. This
includes modifying the default tolerances and parameters (including specifying them incorrectly). The ex-
ample programs also check the eigenvalue and eigenvector approximations computed via a residual check;
this is a recommended practise. A further useful check is whether the computed eigenvectors are orthogonal
to machine precision. We recommend that the user then the (slowly) modify the example program to use
another matrix.

Algorithms that compute the eigenvalues and eigenvectors of a matrix are given by a nonlinear iteration.
As a result, rerunning the same code will not provide the exact same performance unless the floating-point
arithmetic can be guaranteed to be performed in exactly the same manner. In parallel environments, for
example, the order of operations and the resulting floating-point arithmetic will differ with the number of
processes. A good practice is to run the eigensolver several times (including varying the starting vector)
followed by averaging the resulting runtime statistics.

That the algorithms implement a nonlinear iteration also typically manifest in the disappointing realiza-
tion that “small” changes to the graph, e.g., insertion or deletion of edges, cannot exploit computed eigen-
vector approximations. Our experience is that the “small” changes do not result in savings when reusing the
eigenvectors previously computed.
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