
SANDIA REPORT
SAND2005-3835
Unlimited Release
Printed June 2005

Distributed Sparse Linear Algebra
with PyTrilinos

Marzio Sala

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

���������
	�	�����������
���������������! #"$�%���'&�()�
Printed *�+ ��� �
	�	��

Distributed Sparse Linear Algebra with PyTrilinos

Marzio Sala
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

PyTrilinos is a collection of mathematical algorithms and utility functions built on top of the Trili-
nos project [6]. It adds significant power to the interactive Python session by exposing the user to
high-level commands and classes for the creation, handling and usage of serial dense and distributed
sparse linear algebra objects. Using PyTrilinos, an interactive Python session becomes a powerful
data-processing and system-prototyping environment that can be used to test, validate, use and ex-
tend serial and parallel numerical algorithms. For some objects, PyTrilinos implements the popular
Numeric module, gathering a variety of high-level distributed sparse linear algebra functionalities
together.

The main goal of this guide is to let you understand how to “translate” the Trilinos constructs in
PyTrilinos, and explain the most important differences. The guide is not a complete reference. If a set
of options is available for a given class of package, these options are not described here. The reader
still need to consult the manual of the underlying Trilinos package for a more detailed insight.

3

4

Distributed Sparse Linear Algebra with
PyTrilinos

Contents
1 Introduction . 6

1.1 Organization of this Document . 6
1.2 Suggested Configuration Options . 8
1.3 Getting Information on PyTrilinos . 8
1.4 Notation Convention . 9
1.5 How to Reference This Document . 9

2 Serial Dense Linear Algebra . 9

3 Building Sparse Linear Algebra Objects . 11
3.1 Communicators . 11
3.2 Maps . 11
3.3 Basic Vector Operations . 13
3.4 Sparse Matrices . 14
3.5 Matrix Generation . 15
3.6 Input/Output . 16

4 Solving Distributed Sparse Linear Systems. 16
4.1 Direct Solution of Sparse Linear Systems . 17
4.2 Preconditioned Krylov Accelerators . 18

5 Utilities . 20
5.1 Reading Harwell/Boeing Matrices . 20
5.2 Matrix and Vectors Analysis . 20
5.3 Timing . 22
5.4 Matrix-Matrix Operations . 23

5

1 Introduction
This document provides an overview of PyTrilinos, version 2.x. The 2.x versions are completely re-
vised and not compatible with earlier releases. The major difference is a much wider coverage of
Trilinos components and a better integration with Python’s lists and dictionaries, and support for MPI
programs. Some general Python facility is assumed such as could be acquired by working through the
tutorial in the Python distribution [16]. It also is assumed that the reader is somehow familiar with
Trilinos, and knows how to install it. It is of paramount importance to remember that PyTrilinos is
“only” a wrapper to Trilinos, and therefore the reader cannot really understand PyTrilinos if he or she
is not somehow familiar with Trilinos. We suggest documents [14, 8, 6] to become familiar with the
basic Trilinos capabilities.

1.1 Organization of this Document

PyTrilinos reflects the Trilinos organization by presenting a series of modules, each of them wraps a
given Trilinos package. Algorithmic capabilities are defined within independent Trilinos packages; a
package is an integral unit usually developed by a small team of experts in a particular area.

The modules of PyTrilinos covered in this document are:

� Epetra. Epetra is a collection of concrete classes that supports the construction and use of vec-
tors, sparse graphs, and dense and sparse matrices. It provides serial, parallel and distributed
memory capabilities. It uses the BLAS and LAPACK where possible, and as a result has good
performance characteristics; see [7].

� EpetraExt. This module offers input/output capabilities, making it possible to read a matrix in
Harwell/Boeing or MatrixMarket format, or to read and write generic Epetra objects (like maps,
matrices and vectors).

� Triutils. This module allows the creation of several matrices, like the MATLAB’s gallery func-
tion, and it can be useful for examples and testing.

� Amesos. This module contains a set of clear and consistent interfaces to the following third-
party serial and parallel sparse direct solvers: UMFPACK [3], PARDISO, TAUCS, SuperLU and
SuperLU DIST [4], DSCPACK [11], and MUMPS [1]. See [12] for more details.

� AztecOO. This module contains preconditioned Krylov accelerators, like CG, GMRES and sev-
eral others, based on the popular Aztec library. One-level domain decomposition precondition-
ers based on incomplete factorizations are available.

� IFPACK. This module contains object-oriented algebraic preconditioner classes, compatible with
Epetra and AztecOO. It supports the construction and the usage of parallel distributed memory
preconditioners such as overlapping Schwarz domain decomposition with several local solvers;
see [13] for more details.

� ML. This module contains a set of multilevel preconditioners based on aggregation procedures
for serial and vector problems. ML can take advantage of the METIS [10] ParMETIS [9] libraries
to create the aggregates. For a general introduction to ML and its applications, we refer to the
ML Users Guide [15], and to the ML web site.

A description of the organization of the linear algebra modules of PyTrilinos, with some of the
third-party libraries can be accessed, is reported in Figure 1 and Table 1.

6

SuperLU_DIST

MPI BLAS LAPACK UMFPACK

SuperLU

KLUDSCPACK

SPARSKIT

ParMETIS METIS

TriutilsEpetra EpetraExt MLAztecOOAmesos IFPACK

PyTrilinos

Figure 1. Organization of the linear algebra modules of PyTrilinos.

Ep
et

ra

Ep
et

ra
Ex

t

Tr
iu

til
s

A
m

es
os

IF
PA

C
K

M
L

A
zt

ec
O

O

Epetra –
EpetraExt R –
Triutils R –
Amesos R E –
IFPACK R E A –
ML R E A A –
AztecOO R E A A A –

Table 1. Dependency among PyTrilinos packages. For a given row, “R”
means that the package in this column is required, “A” means that the
package in this column can be used but it is not necessary, “E” means
that the package can be used in some examples.

7

1.2 Suggested Configuration Options
To fully take advantage of the presented modules of PyTrilinos, Trilinos should be compiled with the
following options:

--enable-teuchos
--enable-epetra
--enable-epetraext
--enable-amesos
--enable-ifpack
--enable-aztecoo
--enable-ml
--enable-triutils
--enable-python

Users can decide to enable or disable any given module/package; however, PyTrilinos without
the Epetra module is almost an empty box. As a matter of fact, Epetra is the “language” of Trilinos,
and offers a convenient set of interfaces to define distributed linear algebra objects. Epetra supports
double-precision floating point data only (no single-precision or complex).

After configuring and compiling Trilinos, one must install Trilinos (by typing make install), in
order to create PyTrilinos modules. The installing procedure will copy all the Python modules in a
subdirectory of the directory specified with option --prefix=<inst-dir>, for example
lib/python2.3/site-packages/PyTrilinos. The reader might decide to add this directory to
the PYTHONPATH variable, for example using the bash shell command

% export PYTHONPATH=$PYTHONPATH:<inst-dir>/lib/python2.3/site-packages

At this point, to use PyTrilinos simply type

% python
Python 2.3 (#1, Sep 13 2003, 00:49:11)
[GCC 3.3 20030304 (Apple Computer, Inc. build 1495)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from PyTrilinos import <module-name>

where <module-name> is the name of the PyTrilinos module to be imported, as later described.
If Trilinos was configured in parallel (MPI) mode, you cannot run PyTrilinos interactively, and a

Python script file must be created. This script can be executed using an instruction of type

% mpirun -np 4 python ./my-script.py

1.3 Getting Information on PyTrilinos
PyTrilinos is under very active development, therefore small changes in usage and calling sequences
may occur. This guide describes the “stable” features of PyTrilinos. For more up-to-date details, the
following sources of information can be consulted:

� General documentation. Please consult the web page
http://software.sandia.gov/trilinos/packages/pytrilinos

� Mailing lists. The reader can subscribe to the following lists:

pytrilinos-announce@software.sandia.gov
pytrilinos-users@software.sandia.gov
pytrilinos-developers@software.sandia.gov

8

� Sample code. A variety of sample programs are available in the <package-name>/python/example
subdirectory of several Trilinos packages.

� Bug report. Users and developers are encouraged to used Bugzilla to report configuration prob-
lems, bugs, suggest enhancements, or require new features. Bugzilla can be found on the web at
http://software.sandia.gov/bugzilla

If reporting a configuration problem or a bug, please attach the configure script that has been
used, and the compilation and/or run-time error.

1.4 Notation Convention

In this manuscript, typed commands are shown in this font:

% any_shell_command
>>> any_python_command

The character % indicates any shell prompt, while >>> is the Python prompt. Classes, function and
module names are shown as Epetra. Mathematical entities are shown in italics.

1.5 How to Reference This Document

The PyTrilinos project can be referenced by using the following BiBTeX citation information:

@techreport{sparse05sala,
title = "Distributed Sparse Linear Algebra With {P}y{T}rilinos",
author = "Marzio Sala",
institution = "Sandia National Laboratories",
number = "SAND2005-XXXX",
year = 2005

}

2 Serial Dense Linear Algebra
Although PyTrilinos is focused on sparse, parallel linear algebra, some capabilities are given to handle
dense and serial linear algebra problems. These capabilities are based on the Epetra wrapper for BLAS
and LAPACK, and therefore the serial dense module of PyTrilinos is computationally efficient.

We now report some basic operations involving serial dense objects. First, the Epetra module
must be imported, with the instruction

>>> from PyTrilinos import Epetra

Serial dense matrices are defined by Epetra.SerialDenseMatrix objects; serial dense vectors by Epe-
tra.SerialDenseVector objects. As an example, we create the matrix

�
and the vector �

��� ���� � �
� � �
� � �

�	�

� �

���� 	
�
�

�	

with the following commands:

9

>>> A = Epetra.SerialDenseMatrix(3,3)
>>> X = Epetra.SerialDenseVector(3)
>>> B = Epetra.SerialDenseVector(3)
>>> A[0,0] = 1; A[0,1] = 3; A[0,2] = 5
>>> A[1,0] = 2; A[1,1] = 5; A[1,2] = 1
>>> A[2,0] = 2; A[2,1] = 3; A[2,2] = 8
>>> B[0] = 10; B[1] = 8; B[2] = 3

We can verify the result using

>>> print A
Data access mode: Copy
A_Copied: yes
Rows(M): 3
Columns(N): 3
LDA: 3
1 3 5
2 5 1
2 3 8
>>> print B
Data access mode: Copy
A_Copied: yes
Length(M): 3
10 8 3

Matrix A can be reshaped using A.Reshape(N, M); command A.Shape(N, M) reshapes and sets
all the matrix elements to zero. The number of rows and columns of A can be obtained using methods
A.N() and A.M(), respectively. A.NormOne() and A.NormInf() returns the 1- and ��� norm of A.
The matrix vector product is computed as A.Multiply(X, B); SetUseTranspose() toggles the
use of

�
or its transpose,

���
. Scale(alpha) scaled all the matrix elements by alpha.

To solve the linear system ��� � �

(1)

we first need to create an Epetra.SerialDenseSolver object, set the matrix and the vectors, then solve
the linear system:

>>> Solver = Epetra.SerialDenseSolver()
>>> Solver.SetMatrix(A)
>>> Solver.SetVectors(X, B)
>>> Solver.Solve()
>>> print X
Data access mode: Copy
A_Copied: yes
Length(M): 3
-9.84 3.88 6.04

Alternatively, once can compute the inverse of
�

:

>>> Solver.Invert()
>>> print A

Data access mode: Copy
A_Copied: yes

10

Epetra.MpiComm

MPI functions

Epetra.MpiComm

Distributed

Object
Linear Algebra

Distributed

Object
Linear Algebra

MPI functions

Processor 0 Processor 1

Figure 2. All distributed PyTrilinos objects are based on the Epe-
tra.MpiComm object, which takes care of calling MPI functions for intra-
processor communications.

Rows(M): 3
Columns(N): 3
LDA: 3
-1.48 0.56 0.16
0.36 0.08 -0.12
0.88 -0.36 0.04

3 Building Sparse Linear Algebra Objects
3.1 Communicators

Within PyTrilinos, all intra-processor communication are handled though the communicator object
Epetra.Comm, a pure virtual class. A concrete object can simply be defined using a PyComm object:

>>> Comm = Epetra.PyComm()

which returns an Epetra.SerialComm if PyTrilinos has been compiled in serial mode, or an Epetra.MpiComm
if PyTrilinos has support for MPI, using the MPI COMM WORLD communicator. Start-up opera-
tions like a call to MPI Init() are performed by method Epetra.Init(). MPI is finalized by method
Epetra.Finalize(). These two methods are empty functions for non-MPI runs, therefore we suggest
to insert a call to Epetra.Init() as first instruction before the construction of the communicator, and to
call Epetra.Finalize() as last Python instruction in all PyTrilinos scripts. Using this approach, PyTrili-
nos scripts are virtually identical for both serial and parallel runs. A pictorial representation of how
communication are handled in the case of two processors is given in Figure 2.

3.2 Maps

Once a communicator has been defined as shown in Section 3.1, the user has to specify the data layout
for any distributed linear algebra objects. In the Epetra lingo, this layout is called a map. PyTrilinos

11

supports all maps allowed by Epetra. Here, we report two examples, one for a simple linear map, and
another for a more realistic, non-structured map.

A linear maps containing 10 elements and with 0 as base index can be created as

>>> Map = Epetra.Map(10, 0, Comm)

The creation of a more realistic map is now reported. Let us suppose that the map is composed by 9
elements, so that elements 0, 1, 5 and 6 are assigned to processor 0, and elements 2, 3, 4, 7 and 8 to
processor 1. We can create a script file, here called exMap.py as follows:

from PyTrilinos import Epetra
Epetra.Init()
Comm = Epetra.PyComm()
if Comm.NumProc() != 2:

raise Exception, "Must run w/ two processors"

if Comm.MyPID() == 0:
MyGlobalElements = [0, 1, 5, 6];

else:
MyGlobalElements = [2, 3, 4, 7, 8];

Map = Epetra.Map(-1, MyGlobalElements, 0, Comm);
print Map
Epetra.Finalize()

By executing the program, we get:

[msala]> mpirun -np 2 python ./exMap.py
Processor 0 of 2 total processor
Processor 1 of 2 total processor

Number of Global Elements = 9
Number of Global Points = 9
Maximum of all GIDs = 8
Minimum of all GIDs = 0
Index Base = 0
Constant Element Size = 1

Number of Local Elements = 4
Number of Local Points = 4
Maximum of my GIDs = 6
Minimum of my GIDs = 0

MyPID Local Index Global Index
0 0 0
0 1 1
0 2 5
0 3 6

Number of Local Elements = 5
Number of Local Points = 5
Maximum of my GIDs = 8
Minimum of my GIDs = 2

12

MyPID Local Index Global Index
1 0 2
1 1 3
1 2 4
1 3 7
1 4 8

A list of elements assigned to the calling processor can be obtained by method MyGlobalElements();
for example, the instruction print Map.MyGlobalElements() results in the output

[0, 1, 5, 6]
[2, 3, 4, 7, 8]

3.3 Basic Vector Operations

Once a map has been created as shown in Section 3.2, then a distributed vector can be created and
used as follows:

>>> X = Epetra.Vector(Map)
>>> for i in range(0, X.MyLength()):
... X[i] = i
...
>>> print X
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

Multi-vectors (that is, a collection of vectors all sharing the same Map) can be created using typical
Epetra constructors. The following example creates a multivector X which contains 10 elements and 2
vectors, then sets the i-th element of the v-vector, then print the result.

>>> for v in [0, 1]:
... for i in range(0,X.MyLength()):
... X[v,i] = 10 * v + i
...
>>> print X

MyPID GID Value Value
0 0 0 10
0 1 1 11
0 2 2 12
0 3 3 13
0 4 4 14
0 5 5 15
0 6 6 16
0 7 7 17
0 8 8 18
0 9 9 19

Several methods can be used to access and modify vectors and multivectors. To set all the elements of a
vector to a given value simply use X.PutScalar(0.0). To define random elements, use X.Random().

13

3.4 Sparse Matrices

Epetra provides an extensive set of classes to create and fill distributed sparse matrices. These classes
allow row-by-row or element-by-element constructions. Support is provided for common matrix op-
erations, including scaling, norm, matrix-vector multiplication and matrix-multivector multiplication.
Using Epetra objects, applications do not need to know about the particular storage format, and other
implementation details such as data layout, the number and location of ghost nodes.

The process of creating a sparse matrix is more involved than the process for dense matrices. This
is because, in order to obtain excellent numerical performance, one has to provide an estimation of the
nonzero elements on each row of the sparse matrix. (Recall that dynamic allocation of new memory
and copying the old storage into the new one is an expensive operation.)

As an example, in this Section we will present how to construct a distributed (sparse) matrix, aris-
ing from a finite-difference solution of a one-dimensional Laplace problem. This matrix looks like

���
�
�
�
�
�

�
�

�
�

�
� �

�
�

�����������������

�
� �

�
�

�
� �

�
�
�
�
�

	
�

First, we have to specify the number of nonzeros per row. In general, this can be done in two ways:

1. Furnish an integer value, representing the number of nonzero element on each row (the same
value for all the rows);

2. Furnish an integer vector NumNz, of length NumMyElements(), containing the nonzero ele-
ments of each row.

We present here how to proceed using the first approach. The storage format is inherited from the
Epetra CrsMatrix class, which stores the matrix row-by-row.

>>> A = Epetra.CrsMatrix A(Epetra.Copy,Map,3);

We can now create the matrix, by adding one row at-a-time. To fill its values, we need some additional
variables: let us call them Indices and Values. For each row, Indices contains global column
indices, and Values the correspondingly values.

>>> NumLocalRows = Map.NumMyElements()
>>> for ii in range(0, NumLocalRows):
... i = Map.GID(ii)
... if i == 0:
... Indices = [i, i + 1]
... Values = [2.0, -1.0]
... elif i == n - 1:
... Indices = [i, i - 1]
... Values = [2.0, -1.0]
... else:
... Indices = [i, i - 1, i + 1]
... Values = [2.0, -1.0, -1.0]
... Matrix.InsertGlobalValues(i, Values, Indices)
...
>>> ierr = Matrix.FillComplete()

14

Method GID(ii) returns the global ID of local row ii. Finally, we transform the matrix representation
into one based on local indices. The transformation is required in order to perform efficient parallel
matrix-vector products and other matrix operations.

>>> A.FillComplete()

This call to FillComplete() will reorganize the internally stored data so that each process knows
the set of internal, border and external elements for a matrix-vector product of the form � � ��� .
Also, the communication pattern is established. As we have specified just one map, Epetra considers
that the the rows of

�
are distributed among the processes in the same way of the elements of

�
and� .

To visualize the matrix, simply type

>>> print Matrix

Another useful class is Epetra.FECrsMatrix. The most important additional feature provided
by the Epetra.FECrsMatrix with respect to Epetra.CrsMatrix, is the capability to set non-local matrix
elements. In the example, we will set all the entries of a distributed matrix from process 0. For the sake
of simplicity, this matrix is diagonal, but more complex cases can be handled as well.

>>> Matrix = Epetra.FECrsMatrix(Epetra.Copy, Map, 0)
>>> if Comm.MyPID() == 0:
... for i in range(0, Map.NumGlobalElements()):
... Indices = [i]
... Values = [1.0]
... Matrix.InsertGlobalValues(i, Indices, Values)
...
>>> Matrix.GlobalAssemble()
>>> Matrix.FillComplete()

Function SumIntoGlobalValues adds the coefficients specified in Indices (as pair row-column)
to the matrix, adding them to any coefficient that may exist at the specified location. In a finite element
code, the user will probably insert more than one coefficient at time (typically, all the matrix entries
corresponding to an elemental matrix). Method GlobalAssemble() exchange data, so that each
matrix element not owned by process 0 could be sent to the owner, as specified by Map.

3.5 Matrix Generation
It is often convenient to generate matrices and linear systems corresponding to well-known problems.
Module Triutils makes it as simple as using the MATLAB’s gallery function. For details, we refer
to the Trilinos tutorial [14, Chapter 5]. Here, we just show how to generate a matrix corresponding
to a 3D Laplacian on a structured Cartesian grid. First, we need to import modules Triutils and
Epetra. Let nx, ny, nz be the number of nodes along the X-, Y- and Z-axis, respectively, and Comm
an already created communicator. Then, we can simply write:

>>> nx = 100;
>>> ny = 100;
>>> nz = 100;
>>> Gallery = Triutils.CrsMatrixGallery("laplace_3d", Comm)
>>> Gallery.Set("nx", nx);
>>> Gallery.Set("ny", ny);
>>> Gallery.Set("nz", ny);

15

The linear system matrix, solution and right-hand side are obtained using

>>> Matrix = Gallery.GetMatrix();
>>> LHS = Gallery.GetStartingSolution();
>>> RHS = Gallery.GetRHS();

These objects are automatically destroyed then the Gallery object is deleted.

3.6 Input/Output

Module EpetraExt contains several utilities to read and write Epetra objects, in particular maps, vec-
tors, and matrices. One of the goals of this module is to provide basic tools to facilitate exchange of
data from codes based on Trilinos to codes based on PyTrilinos. For example, users may save on file
the linear system produced by an application, then use an interactive Python session to optimize the
parameters for its solution, or analyze the matrix (as explained in Section 5.2).

A Epetra.Map object can be saved on file using the command

>>> FileName = "map.mm"
>>> EpetraExt.BlockMapToMatrixMarketFile(FileName, Map)

or can be read from file as

>>> (ierr, Map2) = EpetraExt.MatrixMarketFileToBlockMap(FileName, Comm)

where ierr is the return error code. Analogously, Epetra.MultiVector’s and Epetra.Crsmatrix’s
objects can be saved on file as follows:

>>> EpetraExt.MultiVectorToMatrixMarketFile("x.mm", X)
>>> EpetraExt.RowMatrixToMatrixMarketFile("A.mm", A)

then read as

(ierr, X2) = EpetraExt.MatrixMarketFileToMultiVector("x.mm", Map)
(ierr, A2) = EpetraExt.MatrixMarketFileToCrsMatrix("A.mm", Map)

4 Solving Distributed Sparse Linear Systems
Let us consider again the solution of the linear system (1), where

�����������
is a sparse linear operator,�	���
�����

and � ���
����� are the solution and right-hand side, respectively. is the global dimension
of the problem, and � is the number of vectors in the multi-vectors

�
and � . (If �

� �
, then

�
and �

are “normal” vectors.) Linear systems of type (1) arise in a variety of applications, and constitute the
innermost computational kernel, and often the most time-consuming of several numerical algorithms.
An efficient solver for Equation (1) is of fundamental importance for most PDE solvers, both linear
and non-linear.

In PyTrilinos, distributed sparse linear problems are represented by Epetra.LinearProblem
objects, which can be created either as

>>> Problem = Epetra.LinearProblem(Matrix, LHS, RHS)

or as follows:

16

>>> Problem = Epetra.LinearProblem()
>>> Problem.SetOperator(Matrix)
>>> Problem.SetLHS(LHS)
>>> Problem.SetRHS(RHS)

Methods GetMatrix(), GetLHS() and GetRHS() can be used to extract the linear system matrix,
the solution vector, and the right-hand side vector, respectively.

4.1 Direct Solution of Sparse Linear Systems
Probably, the most robust strategy to solve (1) is to factorize the linear matrix

�
into the product of

two matrices � and � , so that
� �

��� , and the linear systems with � and � are readily solvable.
Typically, � and � are a lower and upper triangular matrix, respectively, and the process is referred to
as Gaussian elimination.

Direct solution methods can be accessed through the Amesos module. All Amesos objects are
constructed from the function class Amesos. Amesos allows a code to delay the decision about which
concrete class to use to implement the Amesos.BaseSolver interface. The main goal of this class is
to allow the user to select any supported (and enabled at configuration time) direct solver, simply
changing an input parameter. Let us suppose that Amesos has been configured and compiled with
support for SuperLU. To solve the linear system (1) with SuperLU, we first need to create a Solver
object,

>>> Factory = Amesos.Factory()
>>> Solver = Factory.Create("Superlu", Problem)

Then, we can perform the symbolic and numeric factorizations using methods

>>> Solver.SymbolicFactorization()
>>> Solver.NumericFactorization()

The numeric factorization phase will check whether a symbolic factorization exists or not. If not,
method SymbolicFactorization() is invoked. Solution is computed (after setting of LHS and
RHS in the linear problem), using

>>> Solver.Solve()

The solution phase will check whether a numeric factorization exists or not. If not, method
NumericFactorization() is called. Users must provide the nonzero structure of the matrix for
the symbolic phase, and the actual nonzero values for the numeric factorization. Right-hand side and
solution vectors must be set before the solution phase. The object is deleted using

>>> del Solver

Several parameters are available to toggle the selected Amesos solver. To specify parameters, one
can use Python’s dictionaries:

>>> Factory = Amesos.Factory();
>>> Solver = Factory.Create(Type, Problem);
>>> AmesosList = {
... "PrintTiming": ("bool", "true"),
... "PrintStatus": ("bool", "true")
... }
...
>>> Solver.SetParameters(AmesosList);

Please consult the Amesos manual [12] for more details.

17

4.2 Preconditioned Krylov Accelerators
For sparse matrix, the major inconvenience of direct solution methods is that the � and � factors
are typically much denser than the original matrix

�
, making Gaussian elimination too memory de-

manding for large scale problems. Moreover, the factorization process is inherintly serial, and parallel
factorization algorithms can be successfully used only with a relatively modest number of processors.
The forward and back triangular solves typically exhibit very poor parallel speedup.

A very well known solution to this problem is to adopt an iterative solution process, like conjugate
gradient (CG) or GMRES. The rationale behind iterative methods is that they only require (at least
in their simplest form) matrix-vector and vector-vector products, and both operations scale well for
sparse matrices.

To adopt an non-preconditioned iterative solver (for example, CG), with 1550 maximum iterations
and a tolerance of

� 	�� �
on the relative residual, PyTrilinos requires the following instructions:

>>> Solver = AztecOO.AztecOO(Matrix, LHS, RHS)
>>> Solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)
>>> Solver.SetAztecOption(AztecOO.AZ_precond, AztecOO.AZ_none)
>>> Solver.Iterate(1550, 1e-5)

Other solvers can be used by replacing AZ_cgwith, for example, AZ_gmres, AZ_bicgstab,AZ_tfqmr.
Unfortunately, the convergence of iterative methods is determined by the spectral properties of the

matrix
�

—typically, its condition number � � ��� . For real-life problems, � � ��� is “large”, meaning that
the iterative solution method will converge slowly. To solve this problem, the original linear system is
replaced by ���	� ��
 � � �
where

�
, called preconditioner, is an operator whose inverse aim to represent the inverse of

�
, though

being much cheaper to compute.
�

is chosen so that
��� ��

is easier to solver than
�

(that is, it is better
conditioned).

Often, algebraic preconditioners are adopted, that is,
�

is constructed by manipulating the entries
of
�

. This gives rise to the so-called incomplete factorization preconditioners (ILU) or algebraic multi-
level methods.

Because ILU preconditioners do not scale well on parallel computers, a common practice is to per-
form local ILU factorizations. In this situation, each processor computes a factorization of a subset of
matrix rows and columns independently from all other processors. This additional layer of approx-
imation leads to a block Jacobi type of preconditioner across processors, where each block is solved
using an ILU preconditioner. The difficulty with this type of preconditioner is that it tends to become
less robust and require more iterations as the number of processors used increases. This effect can be
offset to some extent by allowing overlap. Overlap refers to having processors redundantly own certain
rows of the matrix for the ILU factorization. Level-1 overlap is defined so that a processor will include
rows that are part of its original set. In addition, if row is part of its original set and row of

�
has

a nonzero entry in column � , then row � will also be included in the factorization on that processor.
Other levels of overlap are computed recursively.

What we have just described is an example of one-level overlapping domain decomposition (DD)
preconditioners. The basic idea of DD methods consists in dividing the computational domain into a
set of subdomains, which may or may not overlap. We will focus on overlapping DD methods only,
because they can be re-interpreted as algebraic manipulation of the assembled matrix, thus allowing
the construction of black-box preconditioners. Overlapping DD methods are often referred to as over-
lapping Schwarz methods. DD preconditioners can be written as

� ��
 ���� � �
�� �
�
� ��
� �

�

(2)

18

where � represents the number of subdomains, �
�

is a rectangular Boolean matrix that restricts a
global vector to the subspace defined by the interior of the th subdomain, and �

�
approximates the

inverse of � � � �
� � � �

�

(3)

for example, being its ILU factorization.
In PyTrilinos two ways are available to define DD preconditioners:

� Using the AztecOO’s preconditioners. The specification starts with

>>> Solver.SetAztecOption(AztecOO.AZ_precond, AztecOO.AZ_dom_decomp)

Next, to adopt an incomplete factorization of
� �

with one level of overlap among the subdo-
mains,

>>> Solver.SetAztecOption(AztecOO.AZ_subdomain_solve, AztecOO.AZ_ilu)
>>> ver.SetAztecOption(AztecOO.AZ_overlap, 1)
>>> ver.SetAztecOption(AztecOO.AZ_graph_fill, 1)

� Using the IFPACK’s preconditioners. This requires the IFPACK module.

>>> Factory = IFPACK.Factory();
>>> Prec = Factory.Create("ILU", Matrix);
>>> IFPACKList = {
... "fact: level-of-fill": ("int", "5")
... }
...
>>> Prec.SetParameters(IFPACKList);
>>> Prec.Initialize();
>>> Prec.Compute();
>>> Problem = Epetra.LinearProblem(Matrix, LHS, RHS);
>>> Solver = AztecOO.AztecOO(Problem);
>>> Solver.SetPrecOperator(Prec)
>>> Solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_gmres);

Another class of preconditioners is given by multilevel preconditioners. For certain combinations
of iterative methods and linear systems, the error at each iteration projected onto the eigenfunctions
has components that decay at a rate proportional to the corresponding eigenvalue (or frequency). Mul-
tilevel methods exploit this property [2] by projecting the linear system onto a hierarchy of increasingly
coarsened “meshes” so that each error component rapidly decays on at least one coarse “mesh.” The
linear system on the coarsest “mesh”, called the coarse grid problem, is solved exactly. The iterative
method is called the smoother, as a reflection of its diminished role as a way to damp out the high
frequency error. The grid transfer (or interpolation) operators are called restriction and prolongation
operators.

Multilevel methods are characterized by the sequence of coarse spaces, the definition of the opera-
tor each coarse space, the specification of the smoother, and the restriction and prolongation operators.
Geometric multigrid (GMG) methods are multilevel methods that require the user to specify the under-
lying grid, and in most cases a hierarchy of (not necessarily nested) coarsens grids. Both the automatic
generation of a grid-hierarchy for GMG and the specification of the ML, designed for unstructured
problems, are beyond the scope of this document.

19

The development of algebraic multigrid (AMG) (see [2, Section 8]) has been motivated by the de-
mand for multilevel methods that are easier to use. In AMG, both the matrix hierarchy and the prolon-
gation operators are constructed just from the stiffness matrix. Recall that to use Aztec00 or IFPACK,
a user must supply a linear system, a select a preconditioning strategy. In AMG, the only additional
information required from the user is to specify a coarsening strategy.

This Section requires to import the ML, AztecOO and Epetramodules. First, we set up the param-
eters for ML using a python dictionary:

>>> MLList = {
... "max levels" : 3,
... "output" : 10,
... "smoother: type" : "symmetric Gauss-Seidel",
... "aggregation: type" : "Uncoupled"
... };

Then, we create the preconditioner and compute it,

>>> Prec = ML.MultiLevelPreconditioner(Matrix, False);
>>> Prec.SetParameterList(MLList);
>>> Prec.ComputePreconditioner();

Finally, we set up the solver, and specifies to use Prec as preconditioner:

>>> Solver = AztecOO.AztecOO(Matrix, LHS, RHS)
>>> Solver.SetPrecOperator(Prec)
>>> Solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg);
>>> Solver.SetAztecOption(AztecOO.AZ_output, 16);
>>> Solver.Iterate(1550, 1e-5)

5 Utilities
5.1 Reading Harwell/Boeing Matrices
The Triutils package makes it very easy to read a matrix stored in the popular Harwell/Boeing for-
mat [5]. The following lines read matrix fidap05, which is freely available from the Matrix Market
web site.

>>> from PyTrilinos import Triutils, Epetra
>>> Epetra.Init()
>>> Comm = Epetra.PyComm();
>>> Map, Matrix, LHS, RHS, Exact = Triutils.ReadHB("fidap05.rsa", Comm);

5.2 Matrix and Vectors Analysis
When working with linear systems, it is sometimes informative to be able to obtain some basic sta-
tistical properties of the linear system matrix and the corresponding vectors. The IFPACK package
furnishes several utilities to accomplish this task. Printed information concern the total number of
rows and nonzeros, the average number of nonzero elements per row, the band size, the number of
(weakly) diagonally dominant rows, and the Frobenius norm of the matrix. These information are
cheap to compute and sometimes useful to understand the structure of a given matrix.

For example, after having loaded matrix as reported in Section 5.1, we can analyze the structure of
the matrix with the command

20

IFPACK.AnalyzeMatrix(Matrix)

which results in the following output:

==
Label = Epetra::CrsMatrix
Global rows = 27
Global columns = 27
Stored nonzeros = 279
Nonzeros / row = 10
Estimated storage (Mbytes) = 0.003456

Actual nonzeros = 279
Nonzeros in strict lower part = 126
Nonzeros in strict upper part = 126

Empty rows = 0 (0 %)
Dirichlet rows = 0 (0 %)
Diagonally dominant rows = 0 (0 %)
Weakly diag. dominant rows = 0 (0 %)

Maximum bandwidth = 20

one-norm inf-norm Frobenius
======== ======== =========

A = 7.11112e+06 7.11112e+06 9.08534e+06
A + AˆT = 7.11112e+06 7.11112e+06 9.08534e+06
A - AˆT = 0 0 0

min avg max
=== === ===

A(i,j) = -1.18519e+06 0.0167264 2.37038e+06
|A(i,j)| = 259259 345679 2.37038e+06

A(k,k) = 296298 954735 2.37038e+06
|A(k,k)| = 296298 954735 2.37038e+06

sum_j A(k,j) = 1.96297e+06 3.57202e+06 7.11112e+06
==

Command IFPACK.AnalyzeMatrixElements(Matrix)and IFPACK.AnalyzeVectorElements(RHS)
will produce the output:

==
Label of matrix = Epetra::CrsMatrix

Elements in [-1.185186e+06, -8.296300e+05) = 20 (= 7.17 %)
Elements in [-8.296300e+05, -4.740738e+05) = 0 (= 0.00 %)
Elements in [-4.740738e+05, -1.185176e+05) = 88 (= 31.54 %)

21

Epetra::CrsMatrix

Figure 3. Sparsity pattern of matrix fidap05 obtained using
IFPACK.PrintSparsity().

Elements in [-1.185176e+05, +2.370387e+05) = 96 (= 34.41 %)
Elements in [+2.370387e+05, +5.925949e+05) = 60 (= 21.51 %)
Elements in [+5.925949e+05, +9.481511e+05) = 0 (= 0.00 %)
Elements in [+9.481511e+05, +1.303707e+06) = 10 (= 3.58 %)
Elements in [+1.303707e+06, +1.659264e+06) = 0 (= 0.00 %)
Elements in [+1.659264e+06, +2.014820e+06) = 0 (= 0.00 %)
Elements in [+2.014820e+06, +2.370376e+06) = 4 (= 1.43 %)
==

==
Vector label = Epetra::Vector

Elements in [+0.000000e+00, +2.666667e-03) = 18 (= 66.67 %)
Elements in [+2.666667e-03, +5.333333e-03) = 0 (= 0.00 %)
Elements in [+5.333333e-03, +8.000000e-03) = 0 (= 0.00 %)
Elements in [+8.000000e-03, +1.066667e-02) = 0 (= 0.00 %)
Elements in [+1.066667e-02, +1.333333e-02) = 1 (= 3.70 %)
Elements in [+1.333333e-02, +1.600000e-02) = 3 (= 11.11 %)
Elements in [+1.600000e-02, +1.866667e-02) = 0 (= 0.00 %)
Elements in [+1.866667e-02, +2.133333e-02) = 0 (= 0.00 %)
Elements in [+2.133333e-02, +2.400000e-02) = 0 (= 0.00 %)
Elements in [+2.400000e-02, +2.666667e-02) = 4 (= 14.81 %)
==

Finally, it is possible to print on file the sparsity pattern of the matrix (here reported in Figure 3)
using the instruction

IFPACK.PrintSparsity(Matrix, "matrix.ps")

5.3 Timing
Class Epetra.Time can be used to track the elapsed CPU time as follows:

22

>>> Comm = Epetra.PyComm()
>>> Time = Epetra.Time(Comm)
>>> Time.ResetStartTime()

... do something here ...
>>> print "Elapsed time is ", Time.ElapsedTime()

5.4 Matrix-Matrix Operations
The EpetraExt module offers matrix-matrix operations. To add two matrices (with compatible
maps), do

EpetraExt.Add(A, False, 1.0, B, -1.0)

References
[1] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel Solver

(MUMPS Versions 4.3.1) Users’ Guide, 2003.

[2] W. L. Briggs, V. E. Henson, and S. McCormick. A multigrid tutorial, Second Edition. SIAM, Philadel-
phia, 2000.

[3] T. A. Davis. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack, 2003.

[4] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU Users’ Guide, 2003.

[5] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math. Soft.,
15:1–14, 1989.

[6] M. A. Heroux. Trilinos home page. http://software.sandia.gov/trilinos.

[7] M. A. Heroux. Epetra Reference Manual, 2.0 edition, 2002.
http://software.sandia.gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.

[8] M. A. Heroux and J. M. Willenbring. Trilinos Users Guide. Technical Report SAND2003-2952,
Sandia National Laboratories, 2003.

[9] G. Karypis and V. Kumar. ParMETIS: Parallel graph partitioning and sparse matrix ordering li
brary. Technical Report 97-060, Department of Computer Science, University of Minnesota, 1997.

[10] G. Karypis and V. Kumar. METIS: Unstructured graph partitining and sparse matrix ordering sy
stem. Technical report, University of Minnesota, Department of Computer Science, 1998.

[11] P. Raghavan. Domain-separator codes for the parallel solution of sparse linear systems. Technical
Report CSE-02-004, Department of Computer Science and Engineering, The Pennsylvania State
University, 2002.

[12] M. Sala. Amesos 2.0 reference guide. Technical Report SAND-4820, Sandia National Laboratories,
September 2004.

[13] M. Sala and M. A. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Technical Report
SAND-0662, Sandia National Laboratories, February 2005.

[14] M. Sala, M. A. Heroux, and D. Day. Trilinos Tutorial, 4.0 edition, 2004.

23

[15] M. Sala, J. J. Hu, and R. S. Tuminaro. ML 3.1 smoothed aggregation user’s guide. Technical Report
SAND-4819, Sandia National Laboratories, September 2004.

[16] Guido van Rossum. Python tutorial. Available at http://docs.python.org/tut/tut.html,
2005.

24

